A soil–water retention model with differentiated adsorptive and capillary regimes

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2025-03-18 DOI:10.1016/j.compgeo.2025.107188
Zhang-Rong Liu , Wei-Min Ye , Yu-Jun Cui , He-Hua Zhu , Yong-Gui Chen , Qiong Wang
{"title":"A soil–water retention model with differentiated adsorptive and capillary regimes","authors":"Zhang-Rong Liu ,&nbsp;Wei-Min Ye ,&nbsp;Yu-Jun Cui ,&nbsp;He-Hua Zhu ,&nbsp;Yong-Gui Chen ,&nbsp;Qiong Wang","doi":"10.1016/j.compgeo.2025.107188","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge of the soil–water retention curve (SWRC) is crucial for understanding the hydro-mechanical behaviour of unsaturated soils. Traditional SWRC models were developed based on bundles of cylindrical capillaries (BCCs) using a residual water content, but they failed to accurately describe water adsorption in the dry end of the curve. In this paper, a new soil–water retention model over full suction range explicitly accounting for adsorptive and capillary processes was developed. A new equation for adsorptive water retention curve (AWRC) was derived from the Dubinin’s theory for the water volume filling in micropores. A new equation for capillary water retention curve (CWRC) was developed by applying Young–Laplace equation to macro-pores with assumed Weibull pore size distribution (PSD). Meanwhile, with introduction of an anti-sigmoid condensation (or cavitation) probability function, the transition between the adsorption and capillary regimes was smoothly described. Then, by superposition of the AWRC and CWRC terms, a new SWRC model was proposed with seven physical parameters representing key characteristic states or rates of adsorption and capillarity. Finally, the robustness of the proposed model was verified against 269 SWRCs of 207 soils collected from the UNSODA 2.0 database and literature, involving various textures from clay to sand. For six representative soils, the proposed model performs better than three well-known existing models (VG, FX and Lu models). The differentiated adsorptive and capillary regimes of these soils accord well with the Lu model and experimental evidence. Of the seven model parameters, the estimated adsorption capacity (<span><math><msubsup><mi>S</mi><mrow><mtext>ra</mtext></mrow><mi>max</mi></msubsup></math></span>) depends linearly on the volumetric proportion of micro-pores (<em>e</em><sub>m</sub>/<em>e</em>) and the capillary characteristic suction (<em>ψ</em><sub>c</sub>) relates to void ratio following a power law, while the remaining parameters are insensitive to variation of void ratio. Accordingly, the proposed model was successfully extended to predict SWRCs of soils with different void ratios.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"183 ","pages":"Article 107188"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001375","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of the soil–water retention curve (SWRC) is crucial for understanding the hydro-mechanical behaviour of unsaturated soils. Traditional SWRC models were developed based on bundles of cylindrical capillaries (BCCs) using a residual water content, but they failed to accurately describe water adsorption in the dry end of the curve. In this paper, a new soil–water retention model over full suction range explicitly accounting for adsorptive and capillary processes was developed. A new equation for adsorptive water retention curve (AWRC) was derived from the Dubinin’s theory for the water volume filling in micropores. A new equation for capillary water retention curve (CWRC) was developed by applying Young–Laplace equation to macro-pores with assumed Weibull pore size distribution (PSD). Meanwhile, with introduction of an anti-sigmoid condensation (or cavitation) probability function, the transition between the adsorption and capillary regimes was smoothly described. Then, by superposition of the AWRC and CWRC terms, a new SWRC model was proposed with seven physical parameters representing key characteristic states or rates of adsorption and capillarity. Finally, the robustness of the proposed model was verified against 269 SWRCs of 207 soils collected from the UNSODA 2.0 database and literature, involving various textures from clay to sand. For six representative soils, the proposed model performs better than three well-known existing models (VG, FX and Lu models). The differentiated adsorptive and capillary regimes of these soils accord well with the Lu model and experimental evidence. Of the seven model parameters, the estimated adsorption capacity (Sramax) depends linearly on the volumetric proportion of micro-pores (em/e) and the capillary characteristic suction (ψc) relates to void ratio following a power law, while the remaining parameters are insensitive to variation of void ratio. Accordingly, the proposed model was successfully extended to predict SWRCs of soils with different void ratios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
A soil–water retention model with differentiated adsorptive and capillary regimes A theoretical analysis method for stiffened deep cement mixing (SDCM) pile groups under vertical load in layer soils Multiscale insights into Sliding Surface Liquefaction through DEM simulations Numerical study on seepage-induced instability of soil-rock mixture slopes using CFD-DEM coupling method Granular column collapse: Analysing the effects of gravity levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1