{"title":"Numerical study on seepage-induced instability of soil-rock mixture slopes using CFD-DEM coupling method","authors":"Yangyu Hu , Ye Lu , Yewei Zheng","doi":"10.1016/j.compgeo.2025.107206","DOIUrl":null,"url":null,"abstract":"<div><div>Soil-rock mixtures (S-RM) are prevalent in both nature and practice, and stability of S-RM slopes is one of the focuses for engineers. In addition to soil strength, seepage erosion is one of the main factors affecting the stability of S-RM slopes. As water infiltration complicates the multi-field coupling effects and micro-scale mechanical behaviors of S-RM, it is essential to investigate seepage-induced S-RM landslides from both macro and micro perspectives. This study proposed a CFD-DEM fluid–solid coupling method, and the method was validated with Darcy experiments and lab slope stability experiments. The method was then applied to analyze seepage-induced slope instability, focusing on the impact of rock content and rock shape. The results indicate that slope failure under seepage showed the same characteristics as debris flow, with instability features such as sliding surfaces, damage range, and particle motions varying according to rock content and shape. As rock content increased, the accumulation of slope transitions through three distinct modes. Slope was prone to failure along the soil-rock interface, and low rock content further impaired the stability. The slope deformation was primarily driven by changes in particles contact. Once slope instability occurred, the system tended to adjust particle contacts to achieve new state of equilibrium.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"183 ","pages":"Article 107206"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001557","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-rock mixtures (S-RM) are prevalent in both nature and practice, and stability of S-RM slopes is one of the focuses for engineers. In addition to soil strength, seepage erosion is one of the main factors affecting the stability of S-RM slopes. As water infiltration complicates the multi-field coupling effects and micro-scale mechanical behaviors of S-RM, it is essential to investigate seepage-induced S-RM landslides from both macro and micro perspectives. This study proposed a CFD-DEM fluid–solid coupling method, and the method was validated with Darcy experiments and lab slope stability experiments. The method was then applied to analyze seepage-induced slope instability, focusing on the impact of rock content and rock shape. The results indicate that slope failure under seepage showed the same characteristics as debris flow, with instability features such as sliding surfaces, damage range, and particle motions varying according to rock content and shape. As rock content increased, the accumulation of slope transitions through three distinct modes. Slope was prone to failure along the soil-rock interface, and low rock content further impaired the stability. The slope deformation was primarily driven by changes in particles contact. Once slope instability occurred, the system tended to adjust particle contacts to achieve new state of equilibrium.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.