Multiscale insights into Sliding Surface Liquefaction through DEM simulations

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2025-03-18 DOI:10.1016/j.compgeo.2025.107191
Manuel Cárdenas-Barrantes, Carlos Ovalle
{"title":"Multiscale insights into Sliding Surface Liquefaction through DEM simulations","authors":"Manuel Cárdenas-Barrantes,&nbsp;Carlos Ovalle","doi":"10.1016/j.compgeo.2025.107191","DOIUrl":null,"url":null,"abstract":"<div><div>Recognizing the mechanisms that trigger liquefaction is critical for developing reliable models to prevent landslides. The tendency for liquefaction to occur generally decreases with increasing soil density. However, when grain fragmentation occurs, the material becomes more contractive, making liquefaction possible even in relatively dense samples. This phenomenon was first recognized and named Sliding Surface Liquefaction (SSL) by Kyoji Sassa’s research group (<em>Soils Found</em>, a=Vol 36, 1996, pp.53-64 ), who reported comprehensive laboratory studies on the topic. Yet, the mechanisms at the grain scale remain poorly understood. To advance in the understanding of SSL and support the development of predictive models, we investigate the links between micro- and macromechanical behavior in crushable granular materials subjected to constant volume shearing. We perform two-dimensional simulations using the Contact Dynamics Discrete Element Method, focusing on the effects of particle fragmentation strength and grading evolution during undrained shearing until liquefaction. The results reveal that higher densities and particle strength delay the onset of liquefaction. At high densities, regardless of the strength of the particles, grading during crushing asymptotically approaches an ultimate distribution, which depends on the initial density and is not associated with the occurrence of liquefaction. Although the amount of grain fragmentation is lower in looser samples, liquefaction occurs in earlier stages than in denser cases.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"183 ","pages":"Article 107191"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001405","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recognizing the mechanisms that trigger liquefaction is critical for developing reliable models to prevent landslides. The tendency for liquefaction to occur generally decreases with increasing soil density. However, when grain fragmentation occurs, the material becomes more contractive, making liquefaction possible even in relatively dense samples. This phenomenon was first recognized and named Sliding Surface Liquefaction (SSL) by Kyoji Sassa’s research group (Soils Found, a=Vol 36, 1996, pp.53-64 ), who reported comprehensive laboratory studies on the topic. Yet, the mechanisms at the grain scale remain poorly understood. To advance in the understanding of SSL and support the development of predictive models, we investigate the links between micro- and macromechanical behavior in crushable granular materials subjected to constant volume shearing. We perform two-dimensional simulations using the Contact Dynamics Discrete Element Method, focusing on the effects of particle fragmentation strength and grading evolution during undrained shearing until liquefaction. The results reveal that higher densities and particle strength delay the onset of liquefaction. At high densities, regardless of the strength of the particles, grading during crushing asymptotically approaches an ultimate distribution, which depends on the initial density and is not associated with the occurrence of liquefaction. Although the amount of grain fragmentation is lower in looser samples, liquefaction occurs in earlier stages than in denser cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
A soil–water retention model with differentiated adsorptive and capillary regimes A theoretical analysis method for stiffened deep cement mixing (SDCM) pile groups under vertical load in layer soils Multiscale insights into Sliding Surface Liquefaction through DEM simulations Numerical study on seepage-induced instability of soil-rock mixture slopes using CFD-DEM coupling method Granular column collapse: Analysing the effects of gravity levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1