{"title":"A theoretical analysis method for stiffened deep cement mixing (SDCM) pile groups under vertical load in layer soils","authors":"Zhiyu Gong, Haoran Ouyang, Guoliang Dai, Xinsheng Chen","doi":"10.1016/j.compgeo.2025.107211","DOIUrl":null,"url":null,"abstract":"<div><div>A theoretical analysis method is proposed to forecast the vertical bearing behavior of a long-core SDCM pile group. The load-settlement behavior of a long-core SDCM pile group is different from that of a single long-core SDCM pile due to the existence of the pile group effect. In this study, the nonlinear behaviors of the inner core–cemented soil interface and the inner core–soil interface are expressed via exponential models, whereas the nonlinear relationships of the cemented soil–soil interface and the pile base–soil interface are calculated via an elastic–plastic model. Additionally, the soil between piles is considered a medium that generates additional displacement. Based on the above conditions, the interaction between long-core SDCM pile groups was analyzed. This method was first used on a single long-core SDCM pile, and the results were compared with the analytical solutions and FEM results from previous studies; then, the field test results of long-core SDCM pile groups were compared. A reasonable prediction can be achieved via the method proposed in this article. Finally, the law of additional displacement caused by the pile group effect and the optimal solution for the cemented soil coverage size for the long-core SDCM pile group were obtained by analyzing important parameters, including the pile spacing <em>s</em><sub>ij</sub>, the height ratio of the cemented soil to the PHC pipe pile <em>L<sub>c</sub>/L<sub>p</sub></em>, the radius ratio of the cemented soil to the PHC pipe pile <em>R<sub>c</sub>/R<sub>p</sub></em>, and the slenderness ratio <em>L</em>/<em>R</em><sub>c</sub>.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"183 ","pages":"Article 107211"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001600","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A theoretical analysis method is proposed to forecast the vertical bearing behavior of a long-core SDCM pile group. The load-settlement behavior of a long-core SDCM pile group is different from that of a single long-core SDCM pile due to the existence of the pile group effect. In this study, the nonlinear behaviors of the inner core–cemented soil interface and the inner core–soil interface are expressed via exponential models, whereas the nonlinear relationships of the cemented soil–soil interface and the pile base–soil interface are calculated via an elastic–plastic model. Additionally, the soil between piles is considered a medium that generates additional displacement. Based on the above conditions, the interaction between long-core SDCM pile groups was analyzed. This method was first used on a single long-core SDCM pile, and the results were compared with the analytical solutions and FEM results from previous studies; then, the field test results of long-core SDCM pile groups were compared. A reasonable prediction can be achieved via the method proposed in this article. Finally, the law of additional displacement caused by the pile group effect and the optimal solution for the cemented soil coverage size for the long-core SDCM pile group were obtained by analyzing important parameters, including the pile spacing sij, the height ratio of the cemented soil to the PHC pipe pile Lc/Lp, the radius ratio of the cemented soil to the PHC pipe pile Rc/Rp, and the slenderness ratio L/Rc.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.