Ferromagnetism and topology of the higher flat band in a fractional Chern insulator

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-03-20 DOI:10.1038/s41567-025-02804-0
Heonjoon Park, Jiaqi Cai, Eric Anderson, Xiao-Wei Zhang, Xiaoyu Liu, William Holtzmann, Weijie Li, Chong Wang, Chaowei Hu, Yuzhou Zhao, Takashi Taniguchi, Kenji Watanabe, Jihui Yang, David Cobden, Jiun-haw Chu, Nicolas Regnault, B. Andrei Bernevig, Liang Fu, Ting Cao, Di Xiao, Xiaodong Xu
{"title":"Ferromagnetism and topology of the higher flat band in a fractional Chern insulator","authors":"Heonjoon Park, Jiaqi Cai, Eric Anderson, Xiao-Wei Zhang, Xiaoyu Liu, William Holtzmann, Weijie Li, Chong Wang, Chaowei Hu, Yuzhou Zhao, Takashi Taniguchi, Kenji Watanabe, Jihui Yang, David Cobden, Jiun-haw Chu, Nicolas Regnault, B. Andrei Bernevig, Liang Fu, Ting Cao, Di Xiao, Xiaodong Xu","doi":"10.1038/s41567-025-02804-0","DOIUrl":null,"url":null,"abstract":"<p>The recent observation of the fractional quantum anomalous Hall effect in moiré fractional Chern insulators provides an opportunity to investigate zero magnetic field anyons. One approach for potentially realizing non-abelian anyons is to engineer higher flat Chern bands that mimic higher Landau levels. We investigate the interaction, topology and ferromagnetism of the second moiré miniband in twisted MoTe<sub>2</sub> bilayers. At half-filling of the second miniband, we observed spontaneous ferromagnetism and an incipient Chern insulator state. The Chern numbers of the top two moiré flat bands exhibited opposite signs for twist angles above 3.1° but had the same sign near 2.6°, consistent with theoretical predictions. In the 2.6° device, increasing the magnetic field induced a topological phase transition due to band-crossing between opposite valleys, resulting in an emergent state with Chern number <i>C</i> = −2. Additionally, an insulating state at half-filling of the second valley-polarized band indicates that a charge-ordered state is favoured over the fractional Chern insulator state. These findings lay a foundation for understanding the higher flat Chern bands, which are crucial for the discovery of non-abelian fractional Chern insulators.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"17 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02804-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent observation of the fractional quantum anomalous Hall effect in moiré fractional Chern insulators provides an opportunity to investigate zero magnetic field anyons. One approach for potentially realizing non-abelian anyons is to engineer higher flat Chern bands that mimic higher Landau levels. We investigate the interaction, topology and ferromagnetism of the second moiré miniband in twisted MoTe2 bilayers. At half-filling of the second miniband, we observed spontaneous ferromagnetism and an incipient Chern insulator state. The Chern numbers of the top two moiré flat bands exhibited opposite signs for twist angles above 3.1° but had the same sign near 2.6°, consistent with theoretical predictions. In the 2.6° device, increasing the magnetic field induced a topological phase transition due to band-crossing between opposite valleys, resulting in an emergent state with Chern number C = −2. Additionally, an insulating state at half-filling of the second valley-polarized band indicates that a charge-ordered state is favoured over the fractional Chern insulator state. These findings lay a foundation for understanding the higher flat Chern bands, which are crucial for the discovery of non-abelian fractional Chern insulators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Deterministic remote entanglement using a chiral quantum interconnect Ferromagnetism and topology of the higher flat band in a fractional Chern insulator Superconductivity controlled by twist angle in monolayer NbSe2 on graphene High-resolution tunnelling spectroscopy of fractional quantum Hall states Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1