Multi-omics analysis reveals tissue-specific biosynthesis and accumulation of diterpene alkaloids in Aconitum japonicum.

IF 2.5 4区 医学 Q3 CHEMISTRY, MEDICINAL Journal of Natural Medicines Pub Date : 2025-03-20 DOI:10.1007/s11418-025-01881-y
Megha Rai, Amit Rai, Tetsuya Mori, Ryo Nakabayashi, Michimi Nakamura, Marsheige Kojoma, Hideyuki Suzuki, Kazuki Saito, Mami Yamazaki
{"title":"Multi-omics analysis reveals tissue-specific biosynthesis and accumulation of diterpene alkaloids in Aconitum japonicum.","authors":"Megha Rai, Amit Rai, Tetsuya Mori, Ryo Nakabayashi, Michimi Nakamura, Marsheige Kojoma, Hideyuki Suzuki, Kazuki Saito, Mami Yamazaki","doi":"10.1007/s11418-025-01881-y","DOIUrl":null,"url":null,"abstract":"<p><p>Aconitum japonicum, native to the mountainous regions of Japan, is a toxic perennial plant widely recognized for its therapeutic potential. Despite its pharmacological importance, the complete biosynthetic pathway of diterpene alkaloids, bioactive compounds with significant pharmaceutical implications and derived from Aconitum species, remains elusive. In this study, leveraging high-throughput metabolome and transcriptome analyses, we conducted a comprehensive investigation using four tissues of A. japonicum, including leaf, mother root, daughter root, and rootlet. By integrating these multi-omics datasets, we achieved a holistic insight into the gene expression patterns and metabolite profiles intricately linked with diterpene alkaloid biosynthesis. Our findings unveil potential regulatory networks and pinpoint key candidate genes pivotal in diterpene alkaloid synthesis. Through comparative analyses across tissues, we delineate tissue-specific variations in gene expression and metabolite accumulation, shedding light on the spatial regulation of these biosynthetic pathways within the plant. Furthermore, this study contributes to a deeper understanding of the molecular mechanisms dictating the production of diterpene alkaloids in A. japonicum. Besides advancing our knowledge of plant secondary metabolism in A. japonicum, this study also provides a high-quality multi-omics resource for future studies aimed at functionally characterizing the target genes involved in different metabolic processes.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11418-025-01881-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aconitum japonicum, native to the mountainous regions of Japan, is a toxic perennial plant widely recognized for its therapeutic potential. Despite its pharmacological importance, the complete biosynthetic pathway of diterpene alkaloids, bioactive compounds with significant pharmaceutical implications and derived from Aconitum species, remains elusive. In this study, leveraging high-throughput metabolome and transcriptome analyses, we conducted a comprehensive investigation using four tissues of A. japonicum, including leaf, mother root, daughter root, and rootlet. By integrating these multi-omics datasets, we achieved a holistic insight into the gene expression patterns and metabolite profiles intricately linked with diterpene alkaloid biosynthesis. Our findings unveil potential regulatory networks and pinpoint key candidate genes pivotal in diterpene alkaloid synthesis. Through comparative analyses across tissues, we delineate tissue-specific variations in gene expression and metabolite accumulation, shedding light on the spatial regulation of these biosynthetic pathways within the plant. Furthermore, this study contributes to a deeper understanding of the molecular mechanisms dictating the production of diterpene alkaloids in A. japonicum. Besides advancing our knowledge of plant secondary metabolism in A. japonicum, this study also provides a high-quality multi-omics resource for future studies aimed at functionally characterizing the target genes involved in different metabolic processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
3.00%
发文量
79
审稿时长
1.7 months
期刊介绍: The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers: -chemistry of natural products -biochemistry of medicinal plants -pharmacology of natural products and herbs, including Kampo formulas and traditional herbs -botanical anatomy -cultivation of medicinal plants. The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.
期刊最新文献
Multi-omics analysis reveals tissue-specific biosynthesis and accumulation of diterpene alkaloids in Aconitum japonicum. Correlation between the metabolic profile of Nelumbo Seed, a component of Seishinrenshiin, and its inhibitory activity on bladder smooth muscle contraction. New oxepin and dihydrobenzofuran derivatives from Bauhinia saccocalyx roots and their anti-inflammatory, cytotoxic, and antioxidant activities. Growth characteristics, optimal harvest timing, and quality assessment of three Evodia species cultivated in Japan. Leptomonines A and B, two novel rare benzyltetrahydroisoquinoline N-oxides from the aerial parts of Leptopyrum fumarioides as potential COX-2 inhibitors: in vitro and in silico studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1