Dynamic Mn–VO Associates Boosted Molecular Oxygen Activation for Benzene Combustion on Mn-Doped Mesocrystalline CeO2

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-03-23 DOI:10.1021/acs.est.4c14734
Xupeng Liu, Yanbiao Shi, Linghao Yu, Biao Zhou, Ziyue Chen, Furong Guo, Hao Li, Xiao Liu, Lizhi Zhang, Zhihui Ai
{"title":"Dynamic Mn–VO Associates Boosted Molecular Oxygen Activation for Benzene Combustion on Mn-Doped Mesocrystalline CeO2","authors":"Xupeng Liu, Yanbiao Shi, Linghao Yu, Biao Zhou, Ziyue Chen, Furong Guo, Hao Li, Xiao Liu, Lizhi Zhang, Zhihui Ai","doi":"10.1021/acs.est.4c14734","DOIUrl":null,"url":null,"abstract":"Highly efficient molecular oxygen activation over transition metal oxides toward catalytic abatement of aromatic volatile organic compounds (AVOCs) is possible yet challenging due to the easily deactivated surface oxygen vacancy (V<sub>O</sub>). Herein, dynamic Mn–V<sub>O</sub> associates were crafted onto the Mn-incorporated CeO<sub>2</sub> mesocrystal (Mn/meso-CeO<sub>2</sub>) surface with Mn substituting a Ce atom through an easy-to-handle precipitation strategy. Experiments and theoretical calculation demonstrated that the asymmetric surface Mn–O–Ce configuration induced electron delivery from the low-valent Mn to adjacent Ce, destabilizing the circumambient O atoms and facilitating the formation of dynamic Mn–V<sub>O</sub> associates. Compared to pristine meso-CeO<sub>2</sub>, the Mn/meso-CeO<sub>2</sub> with dynamic Mn–V<sub>O</sub> associates could efficiently activate O<sub>2</sub> into a superoxide radical and a peroxanion (O<sub>2</sub><sup>•</sup><sup>–</sup> and O<sub>2</sub><sup>2–</sup>) at higher reaction temperature (over 200 °C). Meanwhile, the O atom adjacent to Mn featuring substantially elevated Lewis acidity promoted the adsorption and activation of benzene. Consequently, the Mn/meso-CeO<sub>2</sub> catalyst exhibited a superior catalytic oxidation reactivity (<i>T</i><sub>90</sub> = 215 °C) toward C<sub>6</sub>H<sub>6</sub> combustion via a Langmuir–Hinshelwood mechanism. This work underlines the importance of rational design and regulation of catalytic sites over metal oxide surfaces for robust O<sub>2</sub> activation and durable refractory AVOC combustion.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"54 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c14734","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly efficient molecular oxygen activation over transition metal oxides toward catalytic abatement of aromatic volatile organic compounds (AVOCs) is possible yet challenging due to the easily deactivated surface oxygen vacancy (VO). Herein, dynamic Mn–VO associates were crafted onto the Mn-incorporated CeO2 mesocrystal (Mn/meso-CeO2) surface with Mn substituting a Ce atom through an easy-to-handle precipitation strategy. Experiments and theoretical calculation demonstrated that the asymmetric surface Mn–O–Ce configuration induced electron delivery from the low-valent Mn to adjacent Ce, destabilizing the circumambient O atoms and facilitating the formation of dynamic Mn–VO associates. Compared to pristine meso-CeO2, the Mn/meso-CeO2 with dynamic Mn–VO associates could efficiently activate O2 into a superoxide radical and a peroxanion (O2 and O22–) at higher reaction temperature (over 200 °C). Meanwhile, the O atom adjacent to Mn featuring substantially elevated Lewis acidity promoted the adsorption and activation of benzene. Consequently, the Mn/meso-CeO2 catalyst exhibited a superior catalytic oxidation reactivity (T90 = 215 °C) toward C6H6 combustion via a Langmuir–Hinshelwood mechanism. This work underlines the importance of rational design and regulation of catalytic sites over metal oxide surfaces for robust O2 activation and durable refractory AVOC combustion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态Mn-VO缔合物促进了mn掺杂中晶CeO2上苯燃烧的分子氧活化
由于表面氧空位(VO)容易失活,过渡金属氧化物上的高效分子氧活化对芳香族挥发性有机化合物(AVOCs)的催化减排是可能的,但也具有挑战性。本文通过一种易于处理的沉淀策略,在Mn- CeO2介晶(Mn/meso-CeO2)表面上制备了动态Mn- vo缔合物,Mn取代了Ce原子。实验和理论计算表明,不对称的表面Mn - O - Ce结构诱导电子从低价Mn传递到邻近的Ce,破坏了周围O原子的稳定,促进了动态Mn - vo缔合物的形成。与原始介观ceo2相比,Mn/介观ceo2具有动态Mn - vo结合物,可以在更高的反应温度(超过200℃)下有效地激活O2形成超氧自由基和过氧阴离子(O2•-和O22 -)。同时,与Mn相邻的O原子显著提高了Lewis酸度,促进了苯的吸附和活化。因此,Mn/介观ceo2催化剂通过Langmuir-Hinshelwood机制对C6H6的燃烧表现出优异的催化氧化反应活性(T90 = 215℃)。这项工作强调了合理设计和调节金属氧化物表面上的催化位点对于稳健的O2活化和持久的难降解AVOC燃烧的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Intergenerational and Biochemical Responses of the Western Honey Bee (Apis mellifera) to Sublethal Perfluorooctanesulfonate (PFOS) Exposures. Assessing the Potential of the MTG-FCI Geostationary Mission for the Detection of Methane Plumes. Modeling Radiative Efficiency across Fluorinated Molecules: Bridging Chemistry and Climate Policy for Global Warming Potential Estimations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1