Glioblastoma gene network reconstruction and ontology analysis by online bioinformatics tools.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2021-11-16 DOI:10.1515/jib-2021-0031
Natalya V Gubanova, Nina G Orlova, Arthur I Dergilev, Nina Y Oparina, Yuriy L Orlov
{"title":"Glioblastoma gene network reconstruction and ontology analysis by online bioinformatics tools.","authors":"Natalya V Gubanova,&nbsp;Nina G Orlova,&nbsp;Arthur I Dergilev,&nbsp;Nina Y Oparina,&nbsp;Yuriy L Orlov","doi":"10.1515/jib-2021-0031","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma is the most aggressive type of brain tumors resistant to a number of antitumor drugs. The problem of therapy and drug treatment course is complicated by extremely high heterogeneity in the benign cell populations, the random arrangement of tumor cells, and polymorphism of their nuclei. The pathogenesis of gliomas needs to be studied using modern cellular technologies, genome- and transcriptome-wide technologies of high-throughput sequencing, analysis of gene expression on microarrays, and methods of modern bioinformatics to find new therapy targets. Functional annotation of genes related to the disease could be retrieved based on genetic databases and cross-validated by integrating complementary experimental data. Gene network reconstruction for a set of genes (proteins) proved to be effective approach to study mechanisms underlying disease progression. We used online bioinformatics tools for annotation of gene list for glioma, reconstruction of gene network and comparative analysis of gene ontology categories. The available tools and the databases for glioblastoma gene analysis are discussed together with the recent progress in this field.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":"18 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709738/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2021-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Glioblastoma is the most aggressive type of brain tumors resistant to a number of antitumor drugs. The problem of therapy and drug treatment course is complicated by extremely high heterogeneity in the benign cell populations, the random arrangement of tumor cells, and polymorphism of their nuclei. The pathogenesis of gliomas needs to be studied using modern cellular technologies, genome- and transcriptome-wide technologies of high-throughput sequencing, analysis of gene expression on microarrays, and methods of modern bioinformatics to find new therapy targets. Functional annotation of genes related to the disease could be retrieved based on genetic databases and cross-validated by integrating complementary experimental data. Gene network reconstruction for a set of genes (proteins) proved to be effective approach to study mechanisms underlying disease progression. We used online bioinformatics tools for annotation of gene list for glioma, reconstruction of gene network and comparative analysis of gene ontology categories. The available tools and the databases for glioblastoma gene analysis are discussed together with the recent progress in this field.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用在线生物信息学工具重建胶质母细胞瘤基因网络及本体分析。
胶质母细胞瘤是最具侵袭性的脑肿瘤类型,对许多抗肿瘤药物具有耐药性。良性细胞群异质性极高,肿瘤细胞排列随机,细胞核多态,使治疗和药物疗程问题复杂化。胶质瘤的发病机制需要利用现代细胞技术、全基因组和转录组高通量测序技术、微阵列基因表达分析以及现代生物信息学方法来研究,以寻找新的治疗靶点。基于遗传数据库检索疾病相关基因的功能注释,并通过整合互补实验数据进行交叉验证。一组基因(蛋白质)的基因网络重构被证明是研究疾病进展机制的有效方法。利用在线生物信息学工具对胶质瘤基因表进行标注、基因网络重构和基因本体分类的比较分析。本文讨论了胶质母细胞瘤基因分析的现有工具和数据库,以及该领域的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Reconstruction, Topological and Gene Ontology Enrichment Analysis of Cancerous Gene Regulatory Network Modules
IF 4 3区 生物学Current BioinformaticsPub Date : 2016-03-31 DOI: 10.2174/1574893611666160115212806
Khalid Raza
Reconstruction of Dementia Gene Network Using Online Bioinformatics Tools
IF 0 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB)Pub Date : 2020-07-01 DOI: 10.1109/CSGB51356.2020.9214618
S. Kovalev, Arthur I. Dergilev, Y. Orlov, Oleg D. Fateev, U. N. Kavai-ool
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
Towards a more accurate and reliable evaluation of machine learning protein-protein interaction prediction model performance in the presence of unavoidable dataset biases. Fcodes update: a kinship encoding framework with F-Tree GUI & LLM inference. Predicting precursors of plant specialized metabolites using DeepMol automated machine learning. Designing an optimized theta-defensin peptide for HIV therapy using in-silico approaches. Immunoinformatics-guided design of a multiepitope peptide vaccine targeting the receptor-binding domain of SARS-CoV-2 spike glycoprotein: insights from Indonesian samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1