Understanding Significance Tests From a Non-Mixing Markov Chain for Partisan Gerrymandering Claims

IF 1.5 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Statistics and Public Policy Pub Date : 2019-01-01 DOI:10.1080/2330443X.2019.1574687
Wendy K. Tam Cho, Simon Rubinstein-Salzedo
{"title":"Understanding Significance Tests From a Non-Mixing Markov Chain for Partisan Gerrymandering Claims","authors":"Wendy K. Tam Cho, Simon Rubinstein-Salzedo","doi":"10.1080/2330443X.2019.1574687","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recently, Chikina, Frieze, and Pegden proposed a way to assess significance in a Markov chain without requiring that Markov chain to mix. They presented their theorem as a rigorous test for partisan gerrymandering. We clarify that their ε-outlier test is distinct from a traditional global outlier test and does not indicate, as they imply, that a particular electoral map is associated with an extreme level of “partisan unfairness.” In fact, a map could simultaneously be an ε-outlier and have a typical partisan fairness value. That is, their test identifies local outliers but has no power for assessing whether that local outlier is a global outlier. How their specific definition of local outlier is related to a legal gerrymandering claim is unclear given Supreme Court precedent.","PeriodicalId":43397,"journal":{"name":"Statistics and Public Policy","volume":"6 1","pages":"44 - 49"},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2330443X.2019.1574687","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Public Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2330443X.2019.1574687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT Recently, Chikina, Frieze, and Pegden proposed a way to assess significance in a Markov chain without requiring that Markov chain to mix. They presented their theorem as a rigorous test for partisan gerrymandering. We clarify that their ε-outlier test is distinct from a traditional global outlier test and does not indicate, as they imply, that a particular electoral map is associated with an extreme level of “partisan unfairness.” In fact, a map could simultaneously be an ε-outlier and have a typical partisan fairness value. That is, their test identifies local outliers but has no power for assessing whether that local outlier is a global outlier. How their specific definition of local outlier is related to a legal gerrymandering claim is unclear given Supreme Court precedent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从非混合Markov链理解当事人欺诈索赔的显著性检验
摘要最近,Chikina、Frieze和Pegden提出了一种在不需要混合马尔可夫链的情况下评估马尔可夫链显著性的方法。他们提出了他们的定理,作为对党派划分选区不公的严格检验。我们澄清了他们的ε-异常值测试不同于传统的全球异常值测试,并没有像他们所暗示的那样表明特定的选举地图与极端程度的“党派不公平”有关。事实上,一张地图可能同时是ε-异常数据,并具有典型的党派公平值。也就是说,他们的测试可以识别局部异常值,但无法评估该局部异常值是否为全局异常值。鉴于最高法院的先例,他们对当地异常人群的具体定义与法律上的不公正选区划分主张之间的关系尚不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Public Policy
Statistics and Public Policy SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
3.20
自引率
6.20%
发文量
13
审稿时长
32 weeks
期刊最新文献
State-Building through Public Land Disposal? An Application of Matrix Completion for Counterfactual Prediction Clusters of Jail Incarcerations in US Counties: 2010-2018 Comment on ‘What protects the autonomy of the Federal Statistics Agencies? An Assessment of the Procedures in Place That Protect the Independence and Objectivity of Official Statistics” by Pierson et al. On Coping in a Non-Binary World: Rejoinder to Biedermann and Kotsoglou Commentary on “Three-Way ROCs for Forensic Decision Making” by Nicholas Scurich and Richard S. John (in: Statistics and Public Policy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1