Statistical modeling and analysis of wafer test fail counts

H. Melzner
{"title":"Statistical modeling and analysis of wafer test fail counts","authors":"H. Melzner","doi":"10.1109/ASMC.2002.1001616","DOIUrl":null,"url":null,"abstract":"This paper presents a yield analysis technique based on test fail counts, as these are the most comprehensive and fundamental yield data available. Obviously, this requires the analysis of large volumes of data. Using powerful statistical techniques, such as Principal Component Analysis (PCA) and Multiple Linear Regression (MLR), efficient data reduction is achieved. A basic concept for the modeling of both defect related and parametric fails is presented. Based on a real life examples, means, variances, and covariances of test fail counts are analyzed. As covariance turns out to play a significant role, it is further analyzed using PCA to work out major independent sources of variation. MLR is then applied to partition total yield loss, resulting in the complete representation of actual yield data by just a few relevant patterns. Identification of physical root causes is consequently greatly simplified and accelerated, leading to fast problem solving and yield improvement.","PeriodicalId":64779,"journal":{"name":"半导体技术","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"半导体技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ASMC.2002.1001616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a yield analysis technique based on test fail counts, as these are the most comprehensive and fundamental yield data available. Obviously, this requires the analysis of large volumes of data. Using powerful statistical techniques, such as Principal Component Analysis (PCA) and Multiple Linear Regression (MLR), efficient data reduction is achieved. A basic concept for the modeling of both defect related and parametric fails is presented. Based on a real life examples, means, variances, and covariances of test fail counts are analyzed. As covariance turns out to play a significant role, it is further analyzed using PCA to work out major independent sources of variation. MLR is then applied to partition total yield loss, resulting in the complete representation of actual yield data by just a few relevant patterns. Identification of physical root causes is consequently greatly simplified and accelerated, leading to fast problem solving and yield improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶圆测试失败数的统计建模与分析
本文提出了一种基于试验失效数的良率分析技术,因为这些是可用的最全面和最基本的良率数据。显然,这需要对大量数据进行分析。利用强大的统计技术,如主成分分析(PCA)和多元线性回归(MLR),实现了有效的数据约简。提出了缺陷相关失效和参数失效建模的基本概念。结合实例,分析了试验失败次数的均值、方差和协方差。由于协方差发挥了重要作用,我们进一步使用PCA对其进行分析,找出主要的独立变异源。然后将MLR应用于划分总产量损失,从而仅通过几个相关模式就可以完整地表示实际产量数据。从而大大简化和加速了物理根源的识别,从而快速解决问题和提高成品率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
8436
期刊最新文献
A manufacturable shallow trench isolation process for sub-0.2 um DRAM technologies Ultra-dilute silicon wafer clean chemistry for fabrication of RF microwave devices Planarization yield limiters for wafer-scale 3D ICs Statistical modeling and analysis of wafer test fail counts An approach for improving yield with intentional defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1