Technology challenges and enablers to extend Cu metallization to beyond 7 nm node

T. Nogami, H. Huang, H. Shobha, R. Patlolla, J. Kelly, C. Penny, C. Hu, D. Sil, S. DeVries, J. Lee, S. Nguyen, L. Jiang, J. Demarest, J. Li, G. Lian, M. Ali, P. Bhosale, N. Lanzillo, K. Motoyama, S. Lian, T. Standaert, G. Bonilla, D. Edelstein, B. Haran
{"title":"Technology challenges and enablers to extend Cu metallization to beyond 7 nm node","authors":"T. Nogami, H. Huang, H. Shobha, R. Patlolla, J. Kelly, C. Penny, C. Hu, D. Sil, S. DeVries, J. Lee, S. Nguyen, L. Jiang, J. Demarest, J. Li, G. Lian, M. Ali, P. Bhosale, N. Lanzillo, K. Motoyama, S. Lian, T. Standaert, G. Bonilla, D. Edelstein, B. Haran","doi":"10.23919/VLSIT.2019.8776573","DOIUrl":null,"url":null,"abstract":"Electromigration (EM) and TDDB reliability of Cu interconnects with a barrier/wetting layer as thin as 2 nm employing a PVD-reflowed through-Co self-forming barrier (tCoSFB) is demonstrated to meet the required specifications for 7 nm BEOL. The resulting Cu EM lifetime is 2000X longer than Cu interconnects with a standard scaled barrier/wetting layer. This tCoSFB Cu EM and TDDB reliability performance were equivalent to pure Co metal interconnects, but with a 50% lower line resistance even down to 30 nm pitch dimensions. However, the annealing process for PVD-reflow Cu seed that enhances EM reliability caused Cu agglomeration at dual damascene line-end vias, leading to poor via-chain yield. Resolving this geometry-sensitive via-fill problem was identified as key to extending Cu manufacturability to 7 nm and beyond. We propose, and show preliminary data, for Cu/tCoSFB metallization with CVD Co via pre-fill as potential solution.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"51 1","pages":"T18-T19"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electromigration (EM) and TDDB reliability of Cu interconnects with a barrier/wetting layer as thin as 2 nm employing a PVD-reflowed through-Co self-forming barrier (tCoSFB) is demonstrated to meet the required specifications for 7 nm BEOL. The resulting Cu EM lifetime is 2000X longer than Cu interconnects with a standard scaled barrier/wetting layer. This tCoSFB Cu EM and TDDB reliability performance were equivalent to pure Co metal interconnects, but with a 50% lower line resistance even down to 30 nm pitch dimensions. However, the annealing process for PVD-reflow Cu seed that enhances EM reliability caused Cu agglomeration at dual damascene line-end vias, leading to poor via-chain yield. Resolving this geometry-sensitive via-fill problem was identified as key to extending Cu manufacturability to 7 nm and beyond. We propose, and show preliminary data, for Cu/tCoSFB metallization with CVD Co via pre-fill as potential solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将铜金属化扩展到7nm以上节点的技术挑战和推动因素
采用pvd回流通过co自形成势垒(tCoSFB)的铜互连的电迁移(EM)和TDDB可靠性达到了7纳米BEOL的要求规格。由此产生的Cu EM寿命比具有标准鳞片屏障/润湿层的Cu互连长2000倍。这种tCoSFB Cu EM和TDDB的可靠性性能相当于纯钴金属互连,但即使在30nm间距尺寸下,线路电阻也降低了50%。然而,提高电磁可靠性的pvd -回流铜籽的退火工艺导致铜在双damascene线端过孔处聚集,导致过孔链产率较差。解决这种几何敏感的过孔填充问题被认为是将铜的可制造性扩展到7纳米及以上的关键。我们提出并展示了通过预填充的CVD Co作为潜在解决方案的Cu/tCoSFB金属化的初步数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1