{"title":"A high-speed 50% power-saving half-swing clocking scheme for flip-flop with complementary gate and source drive","authors":"Jin-Cheon Kim, Sanghoon Lee, Hong-June Park","doi":"10.1109/ICVC.1999.821004","DOIUrl":null,"url":null,"abstract":"A half-swing clocking scheme with a complementary gate and source drive was proposed for CMOS flip-flop to reduce the power consumption of the clock system by 43%, while keeping the flip-flop delay time to be the same as that of the conventional full-swing clocking scheme. The delay time of the preceding half stage of flip-flop using this scheme is less than half that using the previous half-swing clocking scheme.","PeriodicalId":13415,"journal":{"name":"ICVC '99. 6th International Conference on VLSI and CAD (Cat. No.99EX361)","volume":"174 1","pages":"574-577"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICVC '99. 6th International Conference on VLSI and CAD (Cat. No.99EX361)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVC.1999.821004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A half-swing clocking scheme with a complementary gate and source drive was proposed for CMOS flip-flop to reduce the power consumption of the clock system by 43%, while keeping the flip-flop delay time to be the same as that of the conventional full-swing clocking scheme. The delay time of the preceding half stage of flip-flop using this scheme is less than half that using the previous half-swing clocking scheme.