K. Tang, Wei-Chen Wei, Zuo-Wei Yeh, Tzu-Hsiang Hsu, Yen-Cheng Chiu, Cheng-Xin Xue, Yu-Chun Kuo, Tai-Hsing We, M. Ho, C. Lo, Ren-Shuo Liu, C. Hsieh, Meng-Fan Chang
{"title":"Considerations of Integrating Computing-In-Memory and Processing-In-Sensor into Convolutional Neural Network Accelerators for Low-Power Edge Devices","authors":"K. Tang, Wei-Chen Wei, Zuo-Wei Yeh, Tzu-Hsiang Hsu, Yen-Cheng Chiu, Cheng-Xin Xue, Yu-Chun Kuo, Tai-Hsing We, M. Ho, C. Lo, Ren-Shuo Liu, C. Hsieh, Meng-Fan Chang","doi":"10.23919/VLSIT.2019.8776560","DOIUrl":null,"url":null,"abstract":"In quest to execute emerging deep learning algorithms at edge devices, developing low-power and low-latency deep learning accelerators (DLAs) have become top priority. To achieve this goal, data processing techniques in sensor and memory utilizing the array structure have drawn much attention. Processing-in-sensor (PIS) solutions could reduce data transfer; computing-in-memory (CIM) macros could reduce memory access and intermediate data movement. We propose a new architecture to integrate PIS and CIM to realize low-power DLA. The advantages of using these techniques and the challenges from system point-of-view are discussed.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"33 1","pages":"T166-T167"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
In quest to execute emerging deep learning algorithms at edge devices, developing low-power and low-latency deep learning accelerators (DLAs) have become top priority. To achieve this goal, data processing techniques in sensor and memory utilizing the array structure have drawn much attention. Processing-in-sensor (PIS) solutions could reduce data transfer; computing-in-memory (CIM) macros could reduce memory access and intermediate data movement. We propose a new architecture to integrate PIS and CIM to realize low-power DLA. The advantages of using these techniques and the challenges from system point-of-view are discussed.