Towards scalable quantum computing based on silicon spin

T. Meunier, L. Hutin, B. Bertrand, Y. Thonnart, G. Pillonnet, G. Billiot, H. Jacquinot, M. Cassé, S. Barraud, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P. Mortemousque, C. Spence, M. Urdampilleta, S. de Franceschi, M. Vinet
{"title":"Towards scalable quantum computing based on silicon spin","authors":"T. Meunier, L. Hutin, B. Bertrand, Y. Thonnart, G. Pillonnet, G. Billiot, H. Jacquinot, M. Cassé, S. Barraud, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P. Mortemousque, C. Spence, M. Urdampilleta, S. de Franceschi, M. Vinet","doi":"10.23919/VLSIT.2019.8776562","DOIUrl":null,"url":null,"abstract":"Quantum computing (QC) is expected to extend the high performance computing roadmap [1]–[2] at the condition to be able to run a large number of errorless quantum operations, typically. over a billion. It is out of reach in actual physical systems because of the quantum decoherence. As a consequence, quantum error correction techniques, which utilize the idea of redundant encoding, have been introduced to cure for the errors [3]–[5]. In state-of-the-art codes, with error thresholds or fidelities around 10−2 in Si spin qubits, it is expected that logical qubits will be made out of a few thousands or more of physical qubits [6], bringing the number of required physical qubits to perform relevant quantum calculations to at least a million.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"89 1","pages":"T30-T31"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Quantum computing (QC) is expected to extend the high performance computing roadmap [1]–[2] at the condition to be able to run a large number of errorless quantum operations, typically. over a billion. It is out of reach in actual physical systems because of the quantum decoherence. As a consequence, quantum error correction techniques, which utilize the idea of redundant encoding, have been introduced to cure for the errors [3]–[5]. In state-of-the-art codes, with error thresholds or fidelities around 10−2 in Si spin qubits, it is expected that logical qubits will be made out of a few thousands or more of physical qubits [6], bringing the number of required physical qubits to perform relevant quantum calculations to at least a million.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向基于硅自旋的可扩展量子计算
量子计算(QC)有望扩展高性能计算路线图[1]-[2],条件是能够运行大量无差错的量子运算。超过十亿。由于量子退相干的存在,这在实际物理系统中是无法实现的。因此,利用冗余编码思想的量子纠错技术被引入来解决这些错误[3]-[5]。在最先进的代码中,Si自旋量子位的错误阈值或保真度约为10−2,预计逻辑量子位将由数千个或更多的物理量子位组成[6],从而使执行相关量子计算所需的物理量子位的数量至少达到100万。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1