A Novel Architecture to Build Ideal-linearity Neuromorphic Synapses on a Pure Logic FinFET Platform Featuring 2.5ns PGM-time and 1012 Endurance

E. Hsieh, H. Chang, S. Chung, T. P. Chen, S. A. Huang, T. J. Chen, O. Cheng, S. Wong
{"title":"A Novel Architecture to Build Ideal-linearity Neuromorphic Synapses on a Pure Logic FinFET Platform Featuring 2.5ns PGM-time and 1012 Endurance","authors":"E. Hsieh, H. Chang, S. Chung, T. P. Chen, S. A. Huang, T. J. Chen, O. Cheng, S. Wong","doi":"10.23919/VLSIT.2019.8776488","DOIUrl":null,"url":null,"abstract":"In this work, we will explore pure logic FinFET devices to realize the functionality of linear weight tuning capability as electric synapses. The unit cell of this new FinFET synapse is composed of two identical FinFETs in series; one serves as control and the other one as storage. This new FinFET synapse exhibits ideal linearity with nearly infinity training cycles $(> 10^{12})$, much lower programming voltage, 0.85V, and faster speed, 2.5ns. It can also analogically increase or decrease the transistor's $\\text{v}_{\\text{th}}$ to vary the drain conductance. As far as the analog performance is concerned, it performs excellent linearity and a wide tuning-window (20x) of weight-tuning capability. lkb synaptic array has also been designed. The spice-simulated results have shown that new FinFET synaptic array can expand the array-size to 64×64, exhibiting 300x of SNR, w.r.t. that of RRAM array. Finally, the training of the neural network based on the proposed FinFET synapse can achieve 97.43% accuracy as high as the GPU one does.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"11 1","pages":"T138-T139"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we will explore pure logic FinFET devices to realize the functionality of linear weight tuning capability as electric synapses. The unit cell of this new FinFET synapse is composed of two identical FinFETs in series; one serves as control and the other one as storage. This new FinFET synapse exhibits ideal linearity with nearly infinity training cycles $(> 10^{12})$, much lower programming voltage, 0.85V, and faster speed, 2.5ns. It can also analogically increase or decrease the transistor's $\text{v}_{\text{th}}$ to vary the drain conductance. As far as the analog performance is concerned, it performs excellent linearity and a wide tuning-window (20x) of weight-tuning capability. lkb synaptic array has also been designed. The spice-simulated results have shown that new FinFET synaptic array can expand the array-size to 64×64, exhibiting 300x of SNR, w.r.t. that of RRAM array. Finally, the training of the neural network based on the proposed FinFET synapse can achieve 97.43% accuracy as high as the GPU one does.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在2.5ns ppm时间和1012续航时间的纯逻辑FinFET平台上构建理想线性神经形态突触的新架构
在这项工作中,我们将探索纯逻辑FinFET器件来实现线性权值调谐能力作为电突触的功能。这种新型FinFET突触的单元胞由两个相同的FinFET串联而成;一个作为控制,另一个作为存储。这种新的FinFET突触具有理想的线性,几乎具有无限的训练周期$(> 10^{12})$,编程电压低得多,为0.85V,速度更快,为2.5ns。它也可以类似地增加或减少晶体管的$\text{v}_{\text{th}}$来改变漏极电导。就模拟性能而言,它具有出色的线性度和宽调谐窗口(20倍)的权重调谐能力。还设计了LKB突触阵列。仿真结果表明,新型FinFET突触阵列可以将阵列尺寸扩展到64×64,信噪比是RRAM阵列的300倍。最后,基于所提出的FinFET突触的神经网络训练准确率达到97.43%,与GPU训练准确率相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1