Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka
{"title":"A Cloud-ready Scalable Annealing Processor for Solving Large-scale Combinatorial Optimization Problems","authors":"Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka","doi":"10.23919/VLSIT.2019.8776512","DOIUrl":null,"url":null,"abstract":"This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"5 1","pages":"C148-C149"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.