Restoration and pore sealing of low-k films by UV-assisted processes

Bo Xie, Kelvin Chan, D. Cui, He Ren, Daemian Raj, E. Hollar, Sanjeev Baluja, J. Rocha, M. Naik, A. Demos
{"title":"Restoration and pore sealing of low-k films by UV-assisted processes","authors":"Bo Xie, Kelvin Chan, D. Cui, He Ren, Daemian Raj, E. Hollar, Sanjeev Baluja, J. Rocha, M. Naik, A. Demos","doi":"10.1109/IITC.2014.6831901","DOIUrl":null,"url":null,"abstract":"Porous low-k dielectrics are susceptible to damages by steps such as etch, ash, and CMP in the BEOL process flow. Such damages degrade the structural and electrical properties of low-k materials. To uphold the value of integrating low-k dielectrics, restoration processes are needed to repair such damages. In this work, UV-assisted silylation is used to repair damages and restore properties of porous low-k dielectrics. The repair process is able to restore carbon content, as indicated by the increase in water contact angle (WCA), and restore the electrical properties, as shown by the decrease in dielectric constant (k) and increase in break-down electrical field based on blanket-film data. On structured wafers, the post-etch repair process effects a 4-6% reduction in RC when compared to without repair. The same UV-assisted platform may be used to effect pore sealing to prevent metals used in BEOL metallization from penetrating into porous low-k materials. On structured wafers, the pore-sealing process is able to reduce Mn penetration into porous low-k when ALD MnN is used as the copper barrier.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2014.6831901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Porous low-k dielectrics are susceptible to damages by steps such as etch, ash, and CMP in the BEOL process flow. Such damages degrade the structural and electrical properties of low-k materials. To uphold the value of integrating low-k dielectrics, restoration processes are needed to repair such damages. In this work, UV-assisted silylation is used to repair damages and restore properties of porous low-k dielectrics. The repair process is able to restore carbon content, as indicated by the increase in water contact angle (WCA), and restore the electrical properties, as shown by the decrease in dielectric constant (k) and increase in break-down electrical field based on blanket-film data. On structured wafers, the post-etch repair process effects a 4-6% reduction in RC when compared to without repair. The same UV-assisted platform may be used to effect pore sealing to prevent metals used in BEOL metallization from penetrating into porous low-k materials. On structured wafers, the pore-sealing process is able to reduce Mn penetration into porous low-k when ALD MnN is used as the copper barrier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外光辅助工艺对低钾薄膜的修复和孔隙密封
多孔低k介电体在BEOL工艺流程中容易受到蚀刻、灰和CMP等步骤的损坏。这种损伤会降低低k材料的结构和电性能。为了维护集成低k介电体的价值,需要修复过程来修复这些损坏。在这项工作中,紫外光辅助硅基化用于修复损伤和恢复多孔低k介电材料的性能。修复过程可以恢复碳含量,表现为水接触角(WCA)的增加;修复过程可以恢复电性能,表现为介电常数(k)的降低和击穿电场的增加。在结构晶圆上,与未修复相比,蚀刻后修复工艺可使RC降低4-6%。同样的uv辅助平台可以用于孔隙密封,以防止BEOL金属化中使用的金属渗透到多孔低k材料中。在结构晶圆上,当ALD MnN用作铜屏障时,孔隙密封工艺能够减少Mn对多孔低k的渗透。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contact Interface Characterization of Graphene contacted MoS2 FETs Controlled ALE-type recess of molybdenum for future logic and memory applications Comparison of Copper and Cobalt Surface Reactivity for Advanced Interconnects On-die Interconnect Innovations for Future Technology Nodes Advanced CMP Process Control by Using Machine Learning Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1