In-memory Reinforcement Learning with Moderately-Stochastic Conductance Switching of Ferroelectric Tunnel Junctions

R. Berdan, T. Marukame, S. Kabuyanagi, K. Ota, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi
{"title":"In-memory Reinforcement Learning with Moderately-Stochastic Conductance Switching of Ferroelectric Tunnel Junctions","authors":"R. Berdan, T. Marukame, S. Kabuyanagi, K. Ota, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi","doi":"10.23919/VLSIT.2019.8776500","DOIUrl":null,"url":null,"abstract":"Building compact and efficient reinforcement learning (RL) systems for mobile deployment requires departure from the von-Neumann computing architecture and embracing novel in-memory computing, and local learning paradigms. We exploit nano-scale ferroelectric tunnel junction (FTJ) memristors with inherent analogue stochastic switching arranged in selector-less crossbars to demonstrate an analogue in-memory RL system, which, via a hardware-friendly algorithm, is capable of learning behavior policies. We show that commonly undesirable stochastic conductance switching is actually, in moderation, a beneficial property which promotes policy finding via a process akin to random search. We experimentally demonstrate path-finding based on reinforcement, and solve a standard control problem of balancing a pole on a cart via simulation, outperforming similar deterministic RL systems.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"35 1","pages":"T22-T23"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Building compact and efficient reinforcement learning (RL) systems for mobile deployment requires departure from the von-Neumann computing architecture and embracing novel in-memory computing, and local learning paradigms. We exploit nano-scale ferroelectric tunnel junction (FTJ) memristors with inherent analogue stochastic switching arranged in selector-less crossbars to demonstrate an analogue in-memory RL system, which, via a hardware-friendly algorithm, is capable of learning behavior policies. We show that commonly undesirable stochastic conductance switching is actually, in moderation, a beneficial property which promotes policy finding via a process akin to random search. We experimentally demonstrate path-finding based on reinforcement, and solve a standard control problem of balancing a pole on a cart via simulation, outperforming similar deterministic RL systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电隧道结中随机电导开关的记忆强化学习
为移动部署构建紧凑高效的强化学习(RL)系统需要脱离冯-诺伊曼计算架构,并采用新颖的内存计算和本地学习范式。我们利用纳米级铁电隧道结(FTJ)忆阻器,其固有的模拟随机开关布置在无选择器的横条中,以演示模拟内存RL系统,该系统通过硬件友好的算法,能够学习行为策略。我们表明,通常不受欢迎的随机电导切换实际上是一个有益的特性,它通过类似于随机搜索的过程促进策略发现。我们通过实验证明了基于强化的寻径,并通过仿真解决了平衡推车上的极点的标准控制问题,优于类似的确定性强化学习系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1