{"title":"A Ternary Based Bit Scalable, 8.80 TOPS/W CNN accelerator with Many-core Processing-in-memory Architecture with 896K synapses/mm2","authors":"S. Okumura, M. Yabuuchi, K. Hijioka, Koichi Nose","doi":"10.23919/VLSIT.2019.8776544","DOIUrl":null,"url":null,"abstract":"A Processing-In-Memory (PIM) accelerator with ternary SRAM is proposed for low-power, large-scale deep neural network (DNN) processing. The accelerator consists of Ternary Neural Arithmetic Memory (TNAM) which is capable of bit-scalable MAC (multiply and accumulation) operation in accordance with target accuracy and power limit. An ADC less readout circuits to reduce analog-digital conversion power and a system-level variation avoidance technique utilizing features of TNAM are also proposed. A test chip with large-scale PIM is fabricated and successfully operate convolutional neural networks (CNNs) with 8.8TOPS/W and highest accuracy and area density among recent SRAM-type PIMs are obtained.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"336 1","pages":"C248-C249"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
A Processing-In-Memory (PIM) accelerator with ternary SRAM is proposed for low-power, large-scale deep neural network (DNN) processing. The accelerator consists of Ternary Neural Arithmetic Memory (TNAM) which is capable of bit-scalable MAC (multiply and accumulation) operation in accordance with target accuracy and power limit. An ADC less readout circuits to reduce analog-digital conversion power and a system-level variation avoidance technique utilizing features of TNAM are also proposed. A test chip with large-scale PIM is fabricated and successfully operate convolutional neural networks (CNNs) with 8.8TOPS/W and highest accuracy and area density among recent SRAM-type PIMs are obtained.