Energy-efficient continual learning in hybrid supervised-unsupervised neural networks with PCM synapses

S. Bianchi, I. Muñoz-Martín, G. Pedretti, O. Melnic, S. Ambrogio, Daniele Ielmini
{"title":"Energy-efficient continual learning in hybrid supervised-unsupervised neural networks with PCM synapses","authors":"S. Bianchi, I. Muñoz-Martín, G. Pedretti, O. Melnic, S. Ambrogio, Daniele Ielmini","doi":"10.23919/VLSIT.2019.8776559","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs) can outperform the human ability of object recognition by supervised training of synaptic parameters with large datasets. Contrarily to the human brain, however, ANNs cannot continually learn, i.e. acquire new information without catastrophically forgetting previous knowledge. To solve this issue, we present a novel hybrid neural network based on CMOS logic and phase change memory (PCM) synapses, mixing a supervised convolutional neural network (CNN) with bio-inspired unsupervised learning and neuronal redundancy. We demonstrate high classification accuracy in MNIST and CIFAR10 datasets (98% and 85%, respectively) and energy-efficient continual learning of up to 30% of non-trained classes with 83% average accuracy.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"21 1","pages":"T172-T173"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks (ANNs) can outperform the human ability of object recognition by supervised training of synaptic parameters with large datasets. Contrarily to the human brain, however, ANNs cannot continually learn, i.e. acquire new information without catastrophically forgetting previous knowledge. To solve this issue, we present a novel hybrid neural network based on CMOS logic and phase change memory (PCM) synapses, mixing a supervised convolutional neural network (CNN) with bio-inspired unsupervised learning and neuronal redundancy. We demonstrate high classification accuracy in MNIST and CIFAR10 datasets (98% and 85%, respectively) and energy-efficient continual learning of up to 30% of non-trained classes with 83% average accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有PCM突触的有监督-无监督混合神经网络的节能持续学习
人工神经网络(ann)通过对大数据集的突触参数进行监督训练,可以超越人类的目标识别能力。然而,与人脑不同的是,人工神经网络不能持续学习,即在不灾难性地忘记先前知识的情况下获取新信息。为了解决这个问题,我们提出了一种基于CMOS逻辑和相变记忆(PCM)突触的新型混合神经网络,将有监督卷积神经网络(CNN)与生物启发的无监督学习和神经元冗余相结合。我们在MNIST和CIFAR10数据集上展示了很高的分类准确率(分别为98%和85%),并且节能的持续学习高达30%的非训练类,平均准确率为83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1