S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta
{"title":"Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron","authors":"S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta","doi":"10.23919/VLSIT.2019.8776487","DOIUrl":null,"url":null,"abstract":"Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $\\text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"6 1","pages":"T140-T141"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $\text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.