Advance Process Control solutions for semiconductor manufacturing

M. Sarfaty, A. Shanmugasundram, A. Schwarm, J. Paik, Jimin Zhang, R. Pan, M. Seamons, H. Li, R. Hung, S. Parikh
{"title":"Advance Process Control solutions for semiconductor manufacturing","authors":"M. Sarfaty, A. Shanmugasundram, A. Schwarm, J. Paik, Jimin Zhang, R. Pan, M. Seamons, H. Li, R. Hung, S. Parikh","doi":"10.1109/ASMC.2002.1001583","DOIUrl":null,"url":null,"abstract":"Traditional semiconductor manufacturing relies on a fixed process-recipe combined with a classical statistical process control that is used to monitor the production process. Leading-edge manufacturing processes require higher levels of precision and accuracy, which necessitate the use of tighter process control. Advanced Process Control (APC) is becoming a critical component to improve performance, yield, throughput, and flexibility of the manufacturing process using run-to-run, wafer-to-wafer, within wafer and real-time process control. The complexity of device manufacturing process as well as the strong coupling effect of several input parameters on the final process outputs prohibit the use of a classical single variable feedback control method. Therefore, multivariate, model-based APC system is developed in conjunction with feed-forward and feedback mechanisms to automatically determine the optimal recipe for each wafer based on both incoming wafer and tool state properties. The APC system uses wafer metrology, process models and sophisticated control algorithms to provide dynamic fine-tuning of intermediate process targets that enhance final device targets. The design of the APC system enables scalable control solutions across a single chamber, a process tool, multi-tools, a process module and multi-process modules using similar building blocks, concepts and algorithms.","PeriodicalId":64779,"journal":{"name":"半导体技术","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"半导体技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ASMC.2002.1001583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Traditional semiconductor manufacturing relies on a fixed process-recipe combined with a classical statistical process control that is used to monitor the production process. Leading-edge manufacturing processes require higher levels of precision and accuracy, which necessitate the use of tighter process control. Advanced Process Control (APC) is becoming a critical component to improve performance, yield, throughput, and flexibility of the manufacturing process using run-to-run, wafer-to-wafer, within wafer and real-time process control. The complexity of device manufacturing process as well as the strong coupling effect of several input parameters on the final process outputs prohibit the use of a classical single variable feedback control method. Therefore, multivariate, model-based APC system is developed in conjunction with feed-forward and feedback mechanisms to automatically determine the optimal recipe for each wafer based on both incoming wafer and tool state properties. The APC system uses wafer metrology, process models and sophisticated control algorithms to provide dynamic fine-tuning of intermediate process targets that enhance final device targets. The design of the APC system enables scalable control solutions across a single chamber, a process tool, multi-tools, a process module and multi-process modules using similar building blocks, concepts and algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进的半导体制造过程控制解决方案
传统的半导体制造依赖于固定的工艺配方与经典的统计过程控制相结合,用于监控生产过程。领先的制造工艺需要更高的精度和准确性,这就需要使用更严格的过程控制。先进过程控制(APC)正在成为通过运行到运行、晶圆到晶圆、晶圆内和实时过程控制来提高制造过程的性能、良率、吞吐量和灵活性的关键组成部分。器件制造过程的复杂性以及多个输入参数对最终过程输出的强耦合效应使得经典的单变量反馈控制方法无法使用。因此,基于模型的多变量APC系统与前馈和反馈机制相结合,根据进料晶圆和刀具状态属性自动确定每片晶圆的最佳配方。APC系统使用晶圆计量、过程模型和复杂的控制算法来提供中间过程目标的动态微调,从而增强最终设备目标。APC系统的设计支持跨单腔室、工艺工具、多工具、工艺模块和多工艺模块的可扩展控制解决方案,使用类似的构建块、概念和算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
8436
期刊最新文献
A manufacturable shallow trench isolation process for sub-0.2 um DRAM technologies Ultra-dilute silicon wafer clean chemistry for fabrication of RF microwave devices Planarization yield limiters for wafer-scale 3D ICs Statistical modeling and analysis of wafer test fail counts An approach for improving yield with intentional defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1