Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs

K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta
{"title":"Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs","authors":"K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta","doi":"10.23919/VLSIT.2019.8776497","DOIUrl":null,"url":null,"abstract":"In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"3 1","pages":"T40-T41"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深尺度铁电场效应管器件间变化的基本理解与控制
在这项工作中,我们提出了一个全面的基于动力学蒙特卡罗(KMC)建模的统计框架来评估薄膜HfO2铁电场效应管(FeFET)器件间的变化。我们得出结论,在器件缩放的FeFET阵列中,内存窗口的关闭可归因于:1)有限的域数量;2)域间差异;3)个体域切换的固有随机性。为了实现FeFET的进一步缩放,提出了从材料、工艺和器件操作来控制变化的共同优化方法:i)通过材料/工艺优化(例如降低沉积温度等)增加畴的数量;Ii)改善域的均匀性(例如最小化域的尺寸变化和缺陷分布等);Iii)增加脉冲幅度/宽度,以确保各个域的确定性切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1