Fourier Channel Attention Powered Lightweight Network for Image Segmentation

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Journal of Translational Engineering in Health and Medicine-Jtehm Pub Date : 2023-03-29 DOI:10.1109/JTEHM.2023.3262841
Fu Zou;Yuanhua Liu;Zelyu Chen;Karl Zhanghao;Dayong Jin
{"title":"Fourier Channel Attention Powered Lightweight Network for Image Segmentation","authors":"Fu Zou;Yuanhua Liu;Zelyu Chen;Karl Zhanghao;Dayong Jin","doi":"10.1109/JTEHM.2023.3262841","DOIUrl":null,"url":null,"abstract":"The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological Section segmentation of nuclei and glands.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"252-260"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10086528","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10086528/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological Section segmentation of nuclei and glands.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
傅立叶通道注意力驱动的轻量级图像分割网络
图像分割的准确性对于定量分析至关重要。我们报道了一种基于U-Net的轻量级网络FRUNet,它结合了傅立叶通道注意力(FCA块)和残差单元的优点来提高准确性。FCA Block自动将学习到的频率信息的权重分配到空间域,更加关注不同生物医学图像的精确高频信息。虽然FCA被广泛用于具有残差网络主干的图像超分辨率,但它在语义分割中的作用却很少被探索。在这里,我们研究了FCA和U-Net的组合,它们的跳跃连接可以将编码器信息与解码器融合。FRUNet在三个公共数据集上的大量实验结果表明,该方法在使用更少的网络参数和提高精度方面优于其他先进的医学图像分割方法。它擅长细胞核和腺体的病理切片分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
期刊最新文献
Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients Non-Contact Monitoring of Inhalation-Exhalation (I:E) Ratio in Non-Ventilated Subjects A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation Video-Based Respiratory Rate Estimation for Infants in the NICU A Novel Chest-Based PPG Measurement System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1