{"title":"多金属电极横向微机械谐振器的亚微米容性间隙工艺","authors":"W. Hsu, J.R. Clark, C. Nguyen","doi":"10.1109/MEMSYS.2001.906550","DOIUrl":null,"url":null,"abstract":"A fabrication process has been demonstrated that combines polysilicon surface micromachining, metal electroplating, and a sidewall sacrificial-spacer technique, to achieve high-aspect-ratio, submicron, lateral capacitive gaps between a micromechanical structure and its metal electrodes, without the need for advanced lithographic and etching technology. Among the devices demonstrated using this process are lateral free-free beam micromechanical resonators (Q=10,470 at 10.47 MHz), contour mode disk resonators (Q=9,400 at 156 MHz), and temperature-compensated micromechanical resonators (Q=10,317 at 13.5 MHz, with a -200 ppm frequency variation over a full 80/spl deg/C range).","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"A sub-micron capacitive gap process for multiple-metal-electrode lateral micromechanical resonators\",\"authors\":\"W. Hsu, J.R. Clark, C. Nguyen\",\"doi\":\"10.1109/MEMSYS.2001.906550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fabrication process has been demonstrated that combines polysilicon surface micromachining, metal electroplating, and a sidewall sacrificial-spacer technique, to achieve high-aspect-ratio, submicron, lateral capacitive gaps between a micromechanical structure and its metal electrodes, without the need for advanced lithographic and etching technology. Among the devices demonstrated using this process are lateral free-free beam micromechanical resonators (Q=10,470 at 10.47 MHz), contour mode disk resonators (Q=9,400 at 156 MHz), and temperature-compensated micromechanical resonators (Q=10,317 at 13.5 MHz, with a -200 ppm frequency variation over a full 80/spl deg/C range).\",\"PeriodicalId\":311365,\"journal\":{\"name\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2001.906550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sub-micron capacitive gap process for multiple-metal-electrode lateral micromechanical resonators
A fabrication process has been demonstrated that combines polysilicon surface micromachining, metal electroplating, and a sidewall sacrificial-spacer technique, to achieve high-aspect-ratio, submicron, lateral capacitive gaps between a micromechanical structure and its metal electrodes, without the need for advanced lithographic and etching technology. Among the devices demonstrated using this process are lateral free-free beam micromechanical resonators (Q=10,470 at 10.47 MHz), contour mode disk resonators (Q=9,400 at 156 MHz), and temperature-compensated micromechanical resonators (Q=10,317 at 13.5 MHz, with a -200 ppm frequency variation over a full 80/spl deg/C range).