确定工艺变化对数字电路良率和性能影响的逻辑表征工具

Christopher Hess, B. Stine, L. Weiland, Kazuhiro Sawada
{"title":"确定工艺变化对数字电路良率和性能影响的逻辑表征工具","authors":"Christopher Hess, B. Stine, L. Weiland, Kazuhiro Sawada","doi":"10.1109/ICMTS.2002.1193195","DOIUrl":null,"url":null,"abstract":"Manufacturing of integrated circuits relies on the sequence of many hundred process steps. Each of these steps will have more or less variation, which has to be within a,certain limit to guarantee the chips functionality at a target speed. But, not every chip layout is susceptive to process variation the same way, which requires a link between process,capabilities and product design. This paper will present a novel Logic Characterization Vehicle (LCV) to investigate the yield and performance impact of process variation on high volume product chips. The LCV combines and manipulates new or already documented circuits like memory cells and combinatorial logic circuits within a JIG interface that allows fast and easy testability. Beside the functionality of such circuits, also path delay as well as cross talk issues can be determined. A standard digital functional tester can be used, since all timing critical measurements will be performed within the JIG. The described method allows early implementation of existing circuits for future technology nodes (shrinks). A Design Of Experiments (DOE) based implementation of possible layout manipulations will determine their impact on yield and performance of a target design as well as its sensitivity to process variation. The described approach can be used at a much earlier stage of product and process development, which will significantly shorten yield ramp.","PeriodicalId":188074,"journal":{"name":"Proceedings of the 2002 International Conference on Microelectronic Test Structures, 2002. ICMTS 2002.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Logic characterization vehicle to determine process variation impact on yield and performance of digital circuits\",\"authors\":\"Christopher Hess, B. Stine, L. Weiland, Kazuhiro Sawada\",\"doi\":\"10.1109/ICMTS.2002.1193195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing of integrated circuits relies on the sequence of many hundred process steps. Each of these steps will have more or less variation, which has to be within a,certain limit to guarantee the chips functionality at a target speed. But, not every chip layout is susceptive to process variation the same way, which requires a link between process,capabilities and product design. This paper will present a novel Logic Characterization Vehicle (LCV) to investigate the yield and performance impact of process variation on high volume product chips. The LCV combines and manipulates new or already documented circuits like memory cells and combinatorial logic circuits within a JIG interface that allows fast and easy testability. Beside the functionality of such circuits, also path delay as well as cross talk issues can be determined. A standard digital functional tester can be used, since all timing critical measurements will be performed within the JIG. The described method allows early implementation of existing circuits for future technology nodes (shrinks). A Design Of Experiments (DOE) based implementation of possible layout manipulations will determine their impact on yield and performance of a target design as well as its sensitivity to process variation. The described approach can be used at a much earlier stage of product and process development, which will significantly shorten yield ramp.\",\"PeriodicalId\":188074,\"journal\":{\"name\":\"Proceedings of the 2002 International Conference on Microelectronic Test Structures, 2002. ICMTS 2002.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Conference on Microelectronic Test Structures, 2002. ICMTS 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTS.2002.1193195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Conference on Microelectronic Test Structures, 2002. ICMTS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2002.1193195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

集成电路的制造依赖于数百个工艺步骤的顺序。每一步都有或多或少的变化,这些变化必须在一定的限制范围内,以保证芯片在目标速度下运行。但是,并非每个芯片布局都以同样的方式容易受到工艺变化的影响,这就需要在工艺、性能和产品设计之间建立联系。本文将提出一种新的逻辑表征载体(LCV)来研究工艺变化对大批量产品芯片的良率和性能的影响。LCV结合和操作新的或已经记录的电路,如存储单元和组合逻辑电路在一个JIG接口,允许快速和容易的可测试性。除了这种电路的功能之外,还可以确定路径延迟以及串扰问题。可以使用标准的数字功能测试仪,因为所有时间关键的测量将在夹具内执行。所描述的方法允许为未来技术节点(缩小)的现有电路的早期实现。基于实验设计(DOE)的可能布局操作的实现将确定它们对目标设计的良率和性能的影响,以及其对工艺变化的敏感性。所描述的方法可以在产品和工艺开发的早期阶段使用,这将大大缩短产量斜坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Logic characterization vehicle to determine process variation impact on yield and performance of digital circuits
Manufacturing of integrated circuits relies on the sequence of many hundred process steps. Each of these steps will have more or less variation, which has to be within a,certain limit to guarantee the chips functionality at a target speed. But, not every chip layout is susceptive to process variation the same way, which requires a link between process,capabilities and product design. This paper will present a novel Logic Characterization Vehicle (LCV) to investigate the yield and performance impact of process variation on high volume product chips. The LCV combines and manipulates new or already documented circuits like memory cells and combinatorial logic circuits within a JIG interface that allows fast and easy testability. Beside the functionality of such circuits, also path delay as well as cross talk issues can be determined. A standard digital functional tester can be used, since all timing critical measurements will be performed within the JIG. The described method allows early implementation of existing circuits for future technology nodes (shrinks). A Design Of Experiments (DOE) based implementation of possible layout manipulations will determine their impact on yield and performance of a target design as well as its sensitivity to process variation. The described approach can be used at a much earlier stage of product and process development, which will significantly shorten yield ramp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Passive multiplexer test structure for fast and accurate contact and via fail rate evaluation Useful numerical techniques for compact modeling CV doping profiling of boron out-diffusion using an abrupt and highly doped arsenic buried epilayer Logic characterization vehicle to determine process variation impact on yield and performance of digital circuits A consistent and scalable PSPICE HFET-Model for DC- and S-parameter-simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1