基于Si平台上垂直堆叠纳米线的栅极全能CMOS (InAs n-FET和GaSb p-FET),通过极薄缓冲层技术和通用栅极堆叠和触点模块实现

K. Goh, K. Tan, S. Yadav, Annie, S. Yoon, G. Liang, X. Gong, Y. Yeo
{"title":"基于Si平台上垂直堆叠纳米线的栅极全能CMOS (InAs n-FET和GaSb p-FET),通过极薄缓冲层技术和通用栅极堆叠和触点模块实现","authors":"K. Goh, K. Tan, S. Yadav, Annie, S. Yoon, G. Liang, X. Gong, Y. Yeo","doi":"10.1109/IEDM.2015.7409704","DOIUrl":null,"url":null,"abstract":"We report the first demonstration of a novel vertically stacked structure comprising InAs nanowires and GaSb nanowires, enabled by an extremely-thin (sub-150 nm) III-V buffer technology on a Si platform. This led to the realization of InAs n-FETs and GaSb p-FETs based on the stacked InAs or GaSb nanowires (NWs), respectively, employing multiple common modules such as gate stack and contact processes. Decent transfer characteristics with SS of 126 mV/decade and DIBL of 285 mV/V were obtained for the InAs n-FET with a channel length LCH of 20 nm. For the vertically stacked GaSb NW p-FET (LCH of 500 nm), the lowest reported SS of 188 mV/decade and highest ION/IOFF ratio of 3.5 orders were achieved for III-V p-FETs on Si substrate.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules\",\"authors\":\"K. Goh, K. Tan, S. Yadav, Annie, S. Yoon, G. Liang, X. Gong, Y. Yeo\",\"doi\":\"10.1109/IEDM.2015.7409704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the first demonstration of a novel vertically stacked structure comprising InAs nanowires and GaSb nanowires, enabled by an extremely-thin (sub-150 nm) III-V buffer technology on a Si platform. This led to the realization of InAs n-FETs and GaSb p-FETs based on the stacked InAs or GaSb nanowires (NWs), respectively, employing multiple common modules such as gate stack and contact processes. Decent transfer characteristics with SS of 126 mV/decade and DIBL of 285 mV/V were obtained for the InAs n-FET with a channel length LCH of 20 nm. For the vertically stacked GaSb NW p-FET (LCH of 500 nm), the lowest reported SS of 188 mV/decade and highest ION/IOFF ratio of 3.5 orders were achieved for III-V p-FETs on Si substrate.\",\"PeriodicalId\":336637,\"journal\":{\"name\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2015.7409704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们报告了一种由InAs纳米线和GaSb纳米线组成的新型垂直堆叠结构的首次演示,该结构由极薄(低于150 nm) III-V缓冲技术在Si平台上实现。这导致分别基于堆叠InAs或GaSb纳米线(NWs)实现InAs n- fet和GaSb p- fet,采用多个通用模块,如栅极堆叠和接触工艺。对于沟道长度LCH为20 nm的InAs n-FET,获得了良好的转移特性,SS为126 mV/decade, DIBL为285 mV/V。对于垂直堆叠的GaSb NW p-FET (LCH为500 nm),在Si衬底上的III-V p-FET获得了最低的SS为188 mV/decade和最高的离子/IOFF比3.5阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules
We report the first demonstration of a novel vertically stacked structure comprising InAs nanowires and GaSb nanowires, enabled by an extremely-thin (sub-150 nm) III-V buffer technology on a Si platform. This led to the realization of InAs n-FETs and GaSb p-FETs based on the stacked InAs or GaSb nanowires (NWs), respectively, employing multiple common modules such as gate stack and contact processes. Decent transfer characteristics with SS of 126 mV/decade and DIBL of 285 mV/V were obtained for the InAs n-FET with a channel length LCH of 20 nm. For the vertically stacked GaSb NW p-FET (LCH of 500 nm), the lowest reported SS of 188 mV/decade and highest ION/IOFF ratio of 3.5 orders were achieved for III-V p-FETs on Si substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications Hot carrier aging and its variation under use-bias: Kinetics, prediction, impact on Vdd and SRAM Robust and compact key generator using physically unclonable function based on logic-transistor-compatible poly-crystalline-Si channel FinFET technology High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1