{"title":"智能尘粒先行者","authors":"B. Warneke, B. Atwood, K. Pister","doi":"10.1109/MEMSYS.2001.906552","DOIUrl":null,"url":null,"abstract":"We have demonstrated a 138 mm/sup 3/ autonomous uni-directional sensing/communication mote that optically transmits a measure of the ambient light level. We have also developed a 63 mm/sup 3/ autonomous bi-directional communication mote that receives an optical signal, generates a pseudorandom sequence based on this signal to emulate sensor data, then optically transmits the result, although it has only been demonstrated in a bench configuration at this time. The latter system contains a micromachined corner cube reflector, a 0.078 mm/sup 3/ CMOS chip that consumes 75 /spl mu/W, and a Mn-Ti-Li cell, but we have also demonstrated operation from an /spl sim/2 mm/sup 2/ solar cell. These motes allow us to demonstrate necessary concepts of Smart Dust such as optical data transmission, data processing, energy management, miniaturization, and system integration.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Smart dust mote forerunners\",\"authors\":\"B. Warneke, B. Atwood, K. Pister\",\"doi\":\"10.1109/MEMSYS.2001.906552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have demonstrated a 138 mm/sup 3/ autonomous uni-directional sensing/communication mote that optically transmits a measure of the ambient light level. We have also developed a 63 mm/sup 3/ autonomous bi-directional communication mote that receives an optical signal, generates a pseudorandom sequence based on this signal to emulate sensor data, then optically transmits the result, although it has only been demonstrated in a bench configuration at this time. The latter system contains a micromachined corner cube reflector, a 0.078 mm/sup 3/ CMOS chip that consumes 75 /spl mu/W, and a Mn-Ti-Li cell, but we have also demonstrated operation from an /spl sim/2 mm/sup 2/ solar cell. These motes allow us to demonstrate necessary concepts of Smart Dust such as optical data transmission, data processing, energy management, miniaturization, and system integration.\",\"PeriodicalId\":311365,\"journal\":{\"name\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2001.906552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We have demonstrated a 138 mm/sup 3/ autonomous uni-directional sensing/communication mote that optically transmits a measure of the ambient light level. We have also developed a 63 mm/sup 3/ autonomous bi-directional communication mote that receives an optical signal, generates a pseudorandom sequence based on this signal to emulate sensor data, then optically transmits the result, although it has only been demonstrated in a bench configuration at this time. The latter system contains a micromachined corner cube reflector, a 0.078 mm/sup 3/ CMOS chip that consumes 75 /spl mu/W, and a Mn-Ti-Li cell, but we have also demonstrated operation from an /spl sim/2 mm/sup 2/ solar cell. These motes allow us to demonstrate necessary concepts of Smart Dust such as optical data transmission, data processing, energy management, miniaturization, and system integration.