X. Wen, Yoshiyuki Yamashita, S. Kajihara, Laung-Terng Wang, K. Saluja, K. Kinoshita
{"title":"扫描测试的低捕获功率测试生成","authors":"X. Wen, Yoshiyuki Yamashita, S. Kajihara, Laung-Terng Wang, K. Saluja, K. Kinoshita","doi":"10.1109/VTS.2005.60","DOIUrl":null,"url":null,"abstract":"Research on low-power scan testing has been focused on the shift mode, with little or no consideration given to the capture mode power. However, high switching activity when capturing a test response can cause excessive IR drop, resulting in significant yield loss. This paper addresses this problem with a novel low-capture-power X-filling method by assigning 0's and 1's to unspecified (X) bits in a test cube to reduce the switching activity in capture mode. This method can be easily incorporated into any test generation flow, where test cubes are obtained during ATPG or by X-bit identification. Experimental results show the effectiveness of this method in reducing capture power dissipation without any impact on area, timing, and fault coverage.","PeriodicalId":268324,"journal":{"name":"23rd IEEE VLSI Test Symposium (VTS'05)","volume":" September","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":"{\"title\":\"On low-capture-power test generation for scan testing\",\"authors\":\"X. Wen, Yoshiyuki Yamashita, S. Kajihara, Laung-Terng Wang, K. Saluja, K. Kinoshita\",\"doi\":\"10.1109/VTS.2005.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on low-power scan testing has been focused on the shift mode, with little or no consideration given to the capture mode power. However, high switching activity when capturing a test response can cause excessive IR drop, resulting in significant yield loss. This paper addresses this problem with a novel low-capture-power X-filling method by assigning 0's and 1's to unspecified (X) bits in a test cube to reduce the switching activity in capture mode. This method can be easily incorporated into any test generation flow, where test cubes are obtained during ATPG or by X-bit identification. Experimental results show the effectiveness of this method in reducing capture power dissipation without any impact on area, timing, and fault coverage.\",\"PeriodicalId\":268324,\"journal\":{\"name\":\"23rd IEEE VLSI Test Symposium (VTS'05)\",\"volume\":\" September\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"186\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd IEEE VLSI Test Symposium (VTS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2005.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd IEEE VLSI Test Symposium (VTS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2005.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On low-capture-power test generation for scan testing
Research on low-power scan testing has been focused on the shift mode, with little or no consideration given to the capture mode power. However, high switching activity when capturing a test response can cause excessive IR drop, resulting in significant yield loss. This paper addresses this problem with a novel low-capture-power X-filling method by assigning 0's and 1's to unspecified (X) bits in a test cube to reduce the switching activity in capture mode. This method can be easily incorporated into any test generation flow, where test cubes are obtained during ATPG or by X-bit identification. Experimental results show the effectiveness of this method in reducing capture power dissipation without any impact on area, timing, and fault coverage.