{"title":"纳米结构中的热电能量转换","authors":"Gang Chen, C. Dames, A. Henry","doi":"10.1109/IEDM.2006.346837","DOIUrl":null,"url":null,"abstract":"Thermoelectric effects enable direct energy conversion between heat and electricity. Various size effects can be explored to increase the thermoelectric performance of nanostructures compared to bulk. Boundary scattering reduces the phonon thermal conductivity, and quantum confinement and interface energy filtering can improve the electronic power factor. Theoretical and experimental results are described for thin films, nanowires, and nanocomposites","PeriodicalId":366359,"journal":{"name":"2006 International Electron Devices Meeting","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermoelectric Energy Conversion in Nanostructures\",\"authors\":\"Gang Chen, C. Dames, A. Henry\",\"doi\":\"10.1109/IEDM.2006.346837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoelectric effects enable direct energy conversion between heat and electricity. Various size effects can be explored to increase the thermoelectric performance of nanostructures compared to bulk. Boundary scattering reduces the phonon thermal conductivity, and quantum confinement and interface energy filtering can improve the electronic power factor. Theoretical and experimental results are described for thin films, nanowires, and nanocomposites\",\"PeriodicalId\":366359,\"journal\":{\"name\":\"2006 International Electron Devices Meeting\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2006.346837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2006.346837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermoelectric Energy Conversion in Nanostructures
Thermoelectric effects enable direct energy conversion between heat and electricity. Various size effects can be explored to increase the thermoelectric performance of nanostructures compared to bulk. Boundary scattering reduces the phonon thermal conductivity, and quantum confinement and interface energy filtering can improve the electronic power factor. Theoretical and experimental results are described for thin films, nanowires, and nanocomposites