{"title":"电沉积MEMS材料性能的温度系数","authors":"L. Chu, L. Que, Y. Gianchandani","doi":"10.1109/MEMSYS.2001.906480","DOIUrl":null,"url":null,"abstract":"This paper presents the use of micromachined differential capacitive strain sensors to investigate mechanical properties of electroplated Ni deposited under two different conditions on Si and glass substrates. The thermal expansion coefficient (/spl alpha/), Young's modulus, and residual strain were studied as a function of temperature. The measured a was 8-16 ppm/K over 23-150/spl deg/C; the residual strain changed from neutral to -880 microstrain over 23-100/spl deg/C in one case and +68.5 microstrain to -420 microstrain over 23-130/spl deg/C in another case; and the Young's modulus ranged from 115-135 GPa at room temperature. The sensitivity of the device to structural non-idealities was evaluated by numerical modeling.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Temperature coefficients of material properties for electrodeposited MEMS\",\"authors\":\"L. Chu, L. Que, Y. Gianchandani\",\"doi\":\"10.1109/MEMSYS.2001.906480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the use of micromachined differential capacitive strain sensors to investigate mechanical properties of electroplated Ni deposited under two different conditions on Si and glass substrates. The thermal expansion coefficient (/spl alpha/), Young's modulus, and residual strain were studied as a function of temperature. The measured a was 8-16 ppm/K over 23-150/spl deg/C; the residual strain changed from neutral to -880 microstrain over 23-100/spl deg/C in one case and +68.5 microstrain to -420 microstrain over 23-130/spl deg/C in another case; and the Young's modulus ranged from 115-135 GPa at room temperature. The sensitivity of the device to structural non-idealities was evaluated by numerical modeling.\",\"PeriodicalId\":311365,\"journal\":{\"name\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2001.906480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature coefficients of material properties for electrodeposited MEMS
This paper presents the use of micromachined differential capacitive strain sensors to investigate mechanical properties of electroplated Ni deposited under two different conditions on Si and glass substrates. The thermal expansion coefficient (/spl alpha/), Young's modulus, and residual strain were studied as a function of temperature. The measured a was 8-16 ppm/K over 23-150/spl deg/C; the residual strain changed from neutral to -880 microstrain over 23-100/spl deg/C in one case and +68.5 microstrain to -420 microstrain over 23-130/spl deg/C in another case; and the Young's modulus ranged from 115-135 GPa at room temperature. The sensitivity of the device to structural non-idealities was evaluated by numerical modeling.