{"title":"自旋-传递-扭矩MRAM的写错误率(应邀)","authors":"D. Worledge","doi":"10.1109/IRPS48203.2023.10117666","DOIUrl":null,"url":null,"abstract":"Embedded Spin-Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM) is now a standard foundry offering for embedded non-volatile memory applications at the 28 nm node and below, where it replaces embedded Flash, due to lower development costs. The switch from in-plane to perpendicularly magnetized magnetic materials enabled reliable operation and a scaling path. Write-error-rate is the key reliability challenge for STT-MRAM. While due to fundamental physics, write-error-rate of STT-MRAM can be engineered to meet even aggressive product specifications.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Write-error-rate of Spin-Transfer-Torque MRAM (Invited)\",\"authors\":\"D. Worledge\",\"doi\":\"10.1109/IRPS48203.2023.10117666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded Spin-Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM) is now a standard foundry offering for embedded non-volatile memory applications at the 28 nm node and below, where it replaces embedded Flash, due to lower development costs. The switch from in-plane to perpendicularly magnetized magnetic materials enabled reliable operation and a scaling path. Write-error-rate is the key reliability challenge for STT-MRAM. While due to fundamental physics, write-error-rate of STT-MRAM can be engineered to meet even aggressive product specifications.\",\"PeriodicalId\":159030,\"journal\":{\"name\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS48203.2023.10117666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Write-error-rate of Spin-Transfer-Torque MRAM (Invited)
Embedded Spin-Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM) is now a standard foundry offering for embedded non-volatile memory applications at the 28 nm node and below, where it replaces embedded Flash, due to lower development costs. The switch from in-plane to perpendicularly magnetized magnetic materials enabled reliable operation and a scaling path. Write-error-rate is the key reliability challenge for STT-MRAM. While due to fundamental physics, write-error-rate of STT-MRAM can be engineered to meet even aggressive product specifications.