一种考虑机械应变和温度的柔性TFT电路单元放置算法

Jiun-Li Lin, Po-Hsun Wu, Tsung-Yi Ho
{"title":"一种考虑机械应变和温度的柔性TFT电路单元放置算法","authors":"Jiun-Li Lin, Po-Hsun Wu, Tsung-Yi Ho","doi":"10.1109/ASPDAC.2013.6509644","DOIUrl":null,"url":null,"abstract":"Mobility is the key device parameter to affect circuit performance in flexible thin-film transistor (TFT) technologies, and it is very sensitive to the change of mechanical strain and temperature. However, existing algorithms only consider the impact of mechanical strain in cell placement of flexible TFT circuit. Without taking temperature into consideration, mobility may be dramatically decreased which leads to circuit performance degradation. This paper presents the first work to reduce the mobility influence caused by the change of both mechanical strain and temperature. Experimental results show that the proposed algorithms can effectively reduce the chip temperature and the influence caused by mobility variation.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel cell placement algorithm for flexible TFT circuit with mechanical strain and temperature consideration\",\"authors\":\"Jiun-Li Lin, Po-Hsun Wu, Tsung-Yi Ho\",\"doi\":\"10.1109/ASPDAC.2013.6509644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobility is the key device parameter to affect circuit performance in flexible thin-film transistor (TFT) technologies, and it is very sensitive to the change of mechanical strain and temperature. However, existing algorithms only consider the impact of mechanical strain in cell placement of flexible TFT circuit. Without taking temperature into consideration, mobility may be dramatically decreased which leads to circuit performance degradation. This paper presents the first work to reduce the mobility influence caused by the change of both mechanical strain and temperature. Experimental results show that the proposed algorithms can effectively reduce the chip temperature and the influence caused by mobility variation.\",\"PeriodicalId\":297528,\"journal\":{\"name\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2013.6509644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在柔性薄膜晶体管(TFT)技术中,迁移率是影响电路性能的关键器件参数,对机械应变和温度的变化非常敏感。然而,现有的算法只考虑了柔性TFT电路放置单元时机械应变的影响。如果不考虑温度,迁移率可能会急剧下降,从而导致电路性能下降。本文提出了降低机械应变和温度变化对合金迁移率影响的初步研究工作。实验结果表明,该算法能有效降低芯片温度和迁移率变化带来的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel cell placement algorithm for flexible TFT circuit with mechanical strain and temperature consideration
Mobility is the key device parameter to affect circuit performance in flexible thin-film transistor (TFT) technologies, and it is very sensitive to the change of mechanical strain and temperature. However, existing algorithms only consider the impact of mechanical strain in cell placement of flexible TFT circuit. Without taking temperature into consideration, mobility may be dramatically decreased which leads to circuit performance degradation. This paper presents the first work to reduce the mobility influence caused by the change of both mechanical strain and temperature. Experimental results show that the proposed algorithms can effectively reduce the chip temperature and the influence caused by mobility variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compiler-assisted refresh minimization for volatile STT-RAM cache Processor and DRAM integration by TSV-based 3-D stacking for power-aware SOCs Performance bound and yield analysis for analog circuits under process variations MIXSyn: An efficient logic synthesis methodology for mixed XOR-AND/OR dominated circuits Unconditionally stable explicit method for the fast 3-D simulation of on-chip power distribution network with through silicon via
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1