{"title":"快速非线性电路仿真的分段多项式关联变换宏建模算法","authors":"Yang Zhang, N. Fong, N. Wong","doi":"10.1109/ASPDAC.2013.6509648","DOIUrl":null,"url":null,"abstract":"We present a piecewise-polynomial based associated transform algorithm (PWPAT) for macromodeling nonlinear circuits in system-level circuit design. The generated reduced model can provide both global and local accuracies with the most compact dimension. Numerical examples compare it with existing algorithms and verify its superior accuracy in higher order harmonics simulation over traditional Trajectory Piecewise-Linear (TPWL) approach.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Piecewise-polynomial associated transform macromodeling algorithm for fast nonlinear circuit simulation\",\"authors\":\"Yang Zhang, N. Fong, N. Wong\",\"doi\":\"10.1109/ASPDAC.2013.6509648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a piecewise-polynomial based associated transform algorithm (PWPAT) for macromodeling nonlinear circuits in system-level circuit design. The generated reduced model can provide both global and local accuracies with the most compact dimension. Numerical examples compare it with existing algorithms and verify its superior accuracy in higher order harmonics simulation over traditional Trajectory Piecewise-Linear (TPWL) approach.\",\"PeriodicalId\":297528,\"journal\":{\"name\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2013.6509648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piecewise-polynomial associated transform macromodeling algorithm for fast nonlinear circuit simulation
We present a piecewise-polynomial based associated transform algorithm (PWPAT) for macromodeling nonlinear circuits in system-level circuit design. The generated reduced model can provide both global and local accuracies with the most compact dimension. Numerical examples compare it with existing algorithms and verify its superior accuracy in higher order harmonics simulation over traditional Trajectory Piecewise-Linear (TPWL) approach.