基于机器学习的汽车级产品离群点检测

Y. L. Yang, P. Tsao, C. W. Lin, Ross Lee, Olivia Ni, T. T. Chen, Y. Ting, C. Lai, Jason Yeh, Arnold Yang, Wayne Huang, Peng Chen, Charly Tsai, Ryan Yang, Y. S. Huang, B. Hsu, M. Z. Lee, T. Lee, Michael Huang, Coming Chen, L. Chu, H. Kao, N. S. Tsai
{"title":"基于机器学习的汽车级产品离群点检测","authors":"Y. L. Yang, P. Tsao, C. W. Lin, Ross Lee, Olivia Ni, T. T. Chen, Y. Ting, C. Lai, Jason Yeh, Arnold Yang, Wayne Huang, Peng Chen, Charly Tsai, Ryan Yang, Y. S. Huang, B. Hsu, M. Z. Lee, T. Lee, Michael Huang, Coming Chen, L. Chu, H. Kao, N. S. Tsai","doi":"10.1109/IRPS48203.2023.10118207","DOIUrl":null,"url":null,"abstract":"Near-zero defective parts per million (DPPM) and returned material authorization (RMA) from customers is the goal pursued by many companies. In this paper, a machine learning based method is proposed to detect outliers in the final test stage using the XGBoost algorithm and the Mahalanobis distance. We captured the weak integrated circuits (ICs) that passed the final test but failed in the system level test (SLT) or the verification of quality engineering aging (QEA). Compared to the random sampling, the experiments showed we could recognize 2x~3x weak IC ratio in the SLT and >10x in the QEA to achieve automotive grade DPPM.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performing Machine Learning Based Outlier Detection for Automotive Grade Products\",\"authors\":\"Y. L. Yang, P. Tsao, C. W. Lin, Ross Lee, Olivia Ni, T. T. Chen, Y. Ting, C. Lai, Jason Yeh, Arnold Yang, Wayne Huang, Peng Chen, Charly Tsai, Ryan Yang, Y. S. Huang, B. Hsu, M. Z. Lee, T. Lee, Michael Huang, Coming Chen, L. Chu, H. Kao, N. S. Tsai\",\"doi\":\"10.1109/IRPS48203.2023.10118207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-zero defective parts per million (DPPM) and returned material authorization (RMA) from customers is the goal pursued by many companies. In this paper, a machine learning based method is proposed to detect outliers in the final test stage using the XGBoost algorithm and the Mahalanobis distance. We captured the weak integrated circuits (ICs) that passed the final test but failed in the system level test (SLT) or the verification of quality engineering aging (QEA). Compared to the random sampling, the experiments showed we could recognize 2x~3x weak IC ratio in the SLT and >10x in the QEA to achieve automotive grade DPPM.\",\"PeriodicalId\":159030,\"journal\":{\"name\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS48203.2023.10118207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10118207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

接近零的次品率(DPPM)和客户的退货授权(RMA)是许多公司追求的目标。本文提出了一种基于机器学习的方法,利用XGBoost算法和马氏距离来检测最终测试阶段的异常值。我们捕获了通过最终测试但未通过系统级测试(SLT)或质量工程老化验证(QEA)的弱集成电路(ic)。与随机抽样相比,我们可以在SLT中识别出2x~3x的弱集成电路比,在QEA中识别出>10x的弱集成电路比,从而实现汽车级DPPM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performing Machine Learning Based Outlier Detection for Automotive Grade Products
Near-zero defective parts per million (DPPM) and returned material authorization (RMA) from customers is the goal pursued by many companies. In this paper, a machine learning based method is proposed to detect outliers in the final test stage using the XGBoost algorithm and the Mahalanobis distance. We captured the weak integrated circuits (ICs) that passed the final test but failed in the system level test (SLT) or the verification of quality engineering aging (QEA). Compared to the random sampling, the experiments showed we could recognize 2x~3x weak IC ratio in the SLT and >10x in the QEA to achieve automotive grade DPPM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insight Into HCI Reliability on I/O Nitrided Devices Signal duration sensitive degradation in scaled devices Investigation on NBTI Control Techniques of HKMG Transistors for Low-power DRAM applications Current Injection Effect on ESD Behaviors of the Parasitic Bipolar Transistors inside P+/N-well diode GHz Cycle-to-Cycle Variation in Ultra-scaled FinFETs: From the Time-Zero to the Aging States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1