Z. Wei, K. Eriguchi, S. Muraoka, K. Katayama, R. Yasuhara, K. Kawai, Y. Ikeda, M. Yoshimura, Y. Hayakawa, K. Shimakawa, T. Mikawa, S. Yoneda
{"title":"基于随机微分方程的40 nm及以上ReRAM可靠性分布预测","authors":"Z. Wei, K. Eriguchi, S. Muraoka, K. Katayama, R. Yasuhara, K. Kawai, Y. Ikeda, M. Yoshimura, Y. Hayakawa, K. Shimakawa, T. Mikawa, S. Yoneda","doi":"10.1109/IEDM.2015.7409650","DOIUrl":null,"url":null,"abstract":"A physical analytic formula based on Stochastic Differential Equation was successfully developed to describe intrinsic ReRAM variation. The formula was proved useful for projecting scaled ReRAM memory window and resistance distribution after long-term retention, verified by testing 40 nm 2-Mbit ReRAM. The formula also centered on practical and quantitative filament characterization.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Distribution projecting the reliability for 40 nm ReRAM and beyond based on stochastic differential equation\",\"authors\":\"Z. Wei, K. Eriguchi, S. Muraoka, K. Katayama, R. Yasuhara, K. Kawai, Y. Ikeda, M. Yoshimura, Y. Hayakawa, K. Shimakawa, T. Mikawa, S. Yoneda\",\"doi\":\"10.1109/IEDM.2015.7409650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physical analytic formula based on Stochastic Differential Equation was successfully developed to describe intrinsic ReRAM variation. The formula was proved useful for projecting scaled ReRAM memory window and resistance distribution after long-term retention, verified by testing 40 nm 2-Mbit ReRAM. The formula also centered on practical and quantitative filament characterization.\",\"PeriodicalId\":336637,\"journal\":{\"name\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2015.7409650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distribution projecting the reliability for 40 nm ReRAM and beyond based on stochastic differential equation
A physical analytic formula based on Stochastic Differential Equation was successfully developed to describe intrinsic ReRAM variation. The formula was proved useful for projecting scaled ReRAM memory window and resistance distribution after long-term retention, verified by testing 40 nm 2-Mbit ReRAM. The formula also centered on practical and quantitative filament characterization.