基于双层Pt/Al2O3/TiO2−x/Pt记忆电阻器的放电速率神经形态网络分类器的建模与实现

M. Prezioso, I. Kataeva, F. Merrikh-Bayat, B. Hoskins, G. Adam, T. Sota, K. Likharev, D. Strukov
{"title":"基于双层Pt/Al2O3/TiO2−x/Pt记忆电阻器的放电速率神经形态网络分类器的建模与实现","authors":"M. Prezioso, I. Kataeva, F. Merrikh-Bayat, B. Hoskins, G. Adam, T. Sota, K. Likharev, D. Strukov","doi":"10.1109/IEDM.2015.7409719","DOIUrl":null,"url":null,"abstract":"Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6- and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode training, respectively. Simulation of much larger, multilayer neural network classifiers based on such technology has sown that their fidelity may be on a par with the state-of-the-art results for software-implemented networks.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"26 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2−x/Pt Memristors\",\"authors\":\"M. Prezioso, I. Kataeva, F. Merrikh-Bayat, B. Hoskins, G. Adam, T. Sota, K. Likharev, D. Strukov\",\"doi\":\"10.1109/IEDM.2015.7409719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6- and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode training, respectively. Simulation of much larger, multilayer neural network classifiers based on such technology has sown that their fidelity may be on a par with the state-of-the-art results for software-implemented networks.\",\"PeriodicalId\":336637,\"journal\":{\"name\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"26 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2015.7409719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

神经形态模式分类器首次使用带有双层金属氧化物忆阻器的无晶体管集成横条电路实现。使用曼哈顿规则算法对10×6-和10×8-crosspoint神经形态网络进行原位训练,将一组3×3二值图像分别分成3类和4类,分别使用批处理模式和随机模式训练。对基于这种技术的更大的多层神经网络分类器的模拟表明,它们的保真度可能与软件实现网络的最先进结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2−x/Pt Memristors
Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6- and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode training, respectively. Simulation of much larger, multilayer neural network classifiers based on such technology has sown that their fidelity may be on a par with the state-of-the-art results for software-implemented networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications Hot carrier aging and its variation under use-bias: Kinetics, prediction, impact on Vdd and SRAM Robust and compact key generator using physically unclonable function based on logic-transistor-compatible poly-crystalline-Si channel FinFET technology High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1