Li Yu, O. Mysore, Lan Wei, L. Daniel, D. Antoniadis, I. Elfadel, D. Boning
{"title":"用于深度缩放器件的超紧凑虚拟源场效应管模型:标准单元库和数字电路的参数提取和验证","authors":"Li Yu, O. Mysore, Lan Wei, L. Daniel, D. Antoniadis, I. Elfadel, D. Boning","doi":"10.1109/ASPDAC.2013.6509649","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, the VS model accounts for the main short-channel effects in nanometer technologies. Using a novel DC and transient parameter extraction methodology, the model is verified with simulated data from a well-characterized, industrial 40-nm bulk silicon model. The VS model is used to fully characterize a standard cell library with timing comparisons showing less than 2.7% error with respect to the industrial design kit. Furthermore, a 1001-stage inverter chain and a 32-bit ripple-carry adder are employed as test cases in a vendor CAD environment to validate the use of the VS model for large-scale digital circuit applications. Parametric Vdd sweeps show that the VS model is also ready for usage in low-power design methodologies. Finally, runtime comparisons have shown that the use of the VS model results in a speedup of about 7.6×.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An ultra-compact virtual source FET model for deeply-scaled devices: Parameter extraction and validation for standard cell libraries and digital circuits\",\"authors\":\"Li Yu, O. Mysore, Lan Wei, L. Daniel, D. Antoniadis, I. Elfadel, D. Boning\",\"doi\":\"10.1109/ASPDAC.2013.6509649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, the VS model accounts for the main short-channel effects in nanometer technologies. Using a novel DC and transient parameter extraction methodology, the model is verified with simulated data from a well-characterized, industrial 40-nm bulk silicon model. The VS model is used to fully characterize a standard cell library with timing comparisons showing less than 2.7% error with respect to the industrial design kit. Furthermore, a 1001-stage inverter chain and a 32-bit ripple-carry adder are employed as test cases in a vendor CAD environment to validate the use of the VS model for large-scale digital circuit applications. Parametric Vdd sweeps show that the VS model is also ready for usage in low-power design methodologies. Finally, runtime comparisons have shown that the use of the VS model results in a speedup of about 7.6×.\",\"PeriodicalId\":297528,\"journal\":{\"name\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2013.6509649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ultra-compact virtual source FET model for deeply-scaled devices: Parameter extraction and validation for standard cell libraries and digital circuits
In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, the VS model accounts for the main short-channel effects in nanometer technologies. Using a novel DC and transient parameter extraction methodology, the model is verified with simulated data from a well-characterized, industrial 40-nm bulk silicon model. The VS model is used to fully characterize a standard cell library with timing comparisons showing less than 2.7% error with respect to the industrial design kit. Furthermore, a 1001-stage inverter chain and a 32-bit ripple-carry adder are employed as test cases in a vendor CAD environment to validate the use of the VS model for large-scale digital circuit applications. Parametric Vdd sweeps show that the VS model is also ready for usage in low-power design methodologies. Finally, runtime comparisons have shown that the use of the VS model results in a speedup of about 7.6×.