Edoardo M. Polo;Andrea Farabbi;Maximiliano Mollura;Alessia Paglialonga;Luca Mainardi;Riccardo Barbieri
{"title":"听觉与视觉刺激诱发情绪的生理反应之比较评估","authors":"Edoardo M. Polo;Andrea Farabbi;Maximiliano Mollura;Alessia Paglialonga;Luca Mainardi;Riccardo Barbieri","doi":"10.1109/JTEHM.2023.3324249","DOIUrl":null,"url":null,"abstract":"The study of emotions through the analysis of the induced physiological responses gained increasing interest in the past decades. Emotion-related studies usually employ films or video clips, but these stimuli do not give the possibility to properly separate and assess the emotional content provided by sight or hearing in terms of physiological responses. In this study we have devised an experimental protocol to elicit emotions by using, separately and jointly, pictures and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases. We processed galvanic skin response, electrocardiogram, blood volume pulse, pupillary signal and electroencephalogram from 21 subjects to extract both autonomic and central nervous system indices to assess physiological responses in relation to three types of stimulation: auditory, visual, and auditory/visual. Results show a higher galvanic skin response to sounds compared to images. Electrocardiogram and blood volume pulse show different trends between auditory and visual stimuli. The electroencephalographic signal reveals a greater attention paid by the subjects when listening to sounds compared to watching images. In conclusion, these results suggest that emotional responses increase during auditory stimulation at both central and peripheral levels, demonstrating the importance of sounds for emotion recognition experiments and also opening the possibility toward the extension of auditory stimuli in other fields of psychophysiology. Clinical and Translational Impact Statement- These findings corroborate auditory stimuli’s importance in eliciting emotions, supporting their use in studying affective responses, e.g., mood disorder diagnosis, human-machine interaction, and emotional perception in pathology.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"171-181"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283859","citationCount":"0","resultStr":"{\"title\":\"Comparative Assessment of Physiological Responses to Emotional Elicitation by Auditory and Visual Stimuli\",\"authors\":\"Edoardo M. Polo;Andrea Farabbi;Maximiliano Mollura;Alessia Paglialonga;Luca Mainardi;Riccardo Barbieri\",\"doi\":\"10.1109/JTEHM.2023.3324249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of emotions through the analysis of the induced physiological responses gained increasing interest in the past decades. Emotion-related studies usually employ films or video clips, but these stimuli do not give the possibility to properly separate and assess the emotional content provided by sight or hearing in terms of physiological responses. In this study we have devised an experimental protocol to elicit emotions by using, separately and jointly, pictures and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases. We processed galvanic skin response, electrocardiogram, blood volume pulse, pupillary signal and electroencephalogram from 21 subjects to extract both autonomic and central nervous system indices to assess physiological responses in relation to three types of stimulation: auditory, visual, and auditory/visual. Results show a higher galvanic skin response to sounds compared to images. Electrocardiogram and blood volume pulse show different trends between auditory and visual stimuli. The electroencephalographic signal reveals a greater attention paid by the subjects when listening to sounds compared to watching images. In conclusion, these results suggest that emotional responses increase during auditory stimulation at both central and peripheral levels, demonstrating the importance of sounds for emotion recognition experiments and also opening the possibility toward the extension of auditory stimuli in other fields of psychophysiology. Clinical and Translational Impact Statement- These findings corroborate auditory stimuli’s importance in eliciting emotions, supporting their use in studying affective responses, e.g., mood disorder diagnosis, human-machine interaction, and emotional perception in pathology.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"12 \",\"pages\":\"171-181\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283859\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10283859/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10283859/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comparative Assessment of Physiological Responses to Emotional Elicitation by Auditory and Visual Stimuli
The study of emotions through the analysis of the induced physiological responses gained increasing interest in the past decades. Emotion-related studies usually employ films or video clips, but these stimuli do not give the possibility to properly separate and assess the emotional content provided by sight or hearing in terms of physiological responses. In this study we have devised an experimental protocol to elicit emotions by using, separately and jointly, pictures and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases. We processed galvanic skin response, electrocardiogram, blood volume pulse, pupillary signal and electroencephalogram from 21 subjects to extract both autonomic and central nervous system indices to assess physiological responses in relation to three types of stimulation: auditory, visual, and auditory/visual. Results show a higher galvanic skin response to sounds compared to images. Electrocardiogram and blood volume pulse show different trends between auditory and visual stimuli. The electroencephalographic signal reveals a greater attention paid by the subjects when listening to sounds compared to watching images. In conclusion, these results suggest that emotional responses increase during auditory stimulation at both central and peripheral levels, demonstrating the importance of sounds for emotion recognition experiments and also opening the possibility toward the extension of auditory stimuli in other fields of psychophysiology. Clinical and Translational Impact Statement- These findings corroborate auditory stimuli’s importance in eliciting emotions, supporting their use in studying affective responses, e.g., mood disorder diagnosis, human-machine interaction, and emotional perception in pathology.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.