{"title":"桥接定性数据孤岛:通过基于机器学习的交叉研究代码链接重用编码的潜力","authors":"Sergej Wildemann, Claudia Niederée, Erick Elejalde","doi":"10.1177/08944393231215459","DOIUrl":null,"url":null,"abstract":"For qualitative data analysis (QDA), researchers assign codes to text segments to arrange the information into topics or concepts. These annotations facilitate information retrieval and the identification of emerging patterns in unstructured data. However, this metadata is typically not published or reused after the research. Subsequent studies with similar research questions require a new definition of codes and do not benefit from other analysts’ experience. Machine learning (ML) based classification seeded with such data remains a challenging task due to the ambiguity of code definitions and the inherent subjectivity of the exercise. Previous attempts to support QDA using ML rely on linear models and only examined individual datasets that were either smaller or coded specifically for this purpose. However, we show that modern approaches effectively capture at least part of the codes’ semantics and may generalize to multiple studies. We analyze the performance of multiple classifiers across three large real-world datasets. Furthermore, we propose an ML-based approach to identify semantic relations of codes in different studies to show thematic faceting, enhance retrieval of related content, or bootstrap the coding process. These are encouraging results that suggest how analysts might benefit from prior interpretation efforts, potentially yielding new insights into qualitative data.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"11 2","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Qualitative Data Silos: The Potential of Reusing Codings Through Machine Learning Based Cross-Study Code Linking\",\"authors\":\"Sergej Wildemann, Claudia Niederée, Erick Elejalde\",\"doi\":\"10.1177/08944393231215459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For qualitative data analysis (QDA), researchers assign codes to text segments to arrange the information into topics or concepts. These annotations facilitate information retrieval and the identification of emerging patterns in unstructured data. However, this metadata is typically not published or reused after the research. Subsequent studies with similar research questions require a new definition of codes and do not benefit from other analysts’ experience. Machine learning (ML) based classification seeded with such data remains a challenging task due to the ambiguity of code definitions and the inherent subjectivity of the exercise. Previous attempts to support QDA using ML rely on linear models and only examined individual datasets that were either smaller or coded specifically for this purpose. However, we show that modern approaches effectively capture at least part of the codes’ semantics and may generalize to multiple studies. We analyze the performance of multiple classifiers across three large real-world datasets. Furthermore, we propose an ML-based approach to identify semantic relations of codes in different studies to show thematic faceting, enhance retrieval of related content, or bootstrap the coding process. These are encouraging results that suggest how analysts might benefit from prior interpretation efforts, potentially yielding new insights into qualitative data.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"11 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393231215459\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08944393231215459","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bridging Qualitative Data Silos: The Potential of Reusing Codings Through Machine Learning Based Cross-Study Code Linking
For qualitative data analysis (QDA), researchers assign codes to text segments to arrange the information into topics or concepts. These annotations facilitate information retrieval and the identification of emerging patterns in unstructured data. However, this metadata is typically not published or reused after the research. Subsequent studies with similar research questions require a new definition of codes and do not benefit from other analysts’ experience. Machine learning (ML) based classification seeded with such data remains a challenging task due to the ambiguity of code definitions and the inherent subjectivity of the exercise. Previous attempts to support QDA using ML rely on linear models and only examined individual datasets that were either smaller or coded specifically for this purpose. However, we show that modern approaches effectively capture at least part of the codes’ semantics and may generalize to multiple studies. We analyze the performance of multiple classifiers across three large real-world datasets. Furthermore, we propose an ML-based approach to identify semantic relations of codes in different studies to show thematic faceting, enhance retrieval of related content, or bootstrap the coding process. These are encouraging results that suggest how analysts might benefit from prior interpretation efforts, potentially yielding new insights into qualitative data.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.