Xiao-gang Che , Jiao Jin , Yi-xiao Zhang , Si-yu Liu , Man Wang , Juan Yang
{"title":"制备用于高性能超级电容器的煤基富氧多孔碳纳米片","authors":"Xiao-gang Che , Jiao Jin , Yi-xiao Zhang , Si-yu Liu , Man Wang , Juan Yang","doi":"10.1016/S1872-5805(23)60752-8","DOIUrl":null,"url":null,"abstract":"<div><p>The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 6","pages":"Pages 1050-1058"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors\",\"authors\":\"Xiao-gang Che , Jiao Jin , Yi-xiao Zhang , Si-yu Liu , Man Wang , Juan Yang\",\"doi\":\"10.1016/S1872-5805(23)60752-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"38 6\",\"pages\":\"Pages 1050-1058\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580523607528\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607528","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
改性和优化多孔碳电极是实现高性能超级电容器的关键。通过利用二维镁铝层双氢氧化物(MgAl-LDH)的刚性约束和 KOH 活化,制备了由煤炭工业固体副产品制成的具有二维(2D)结构的富氧多孔碳纳米片(OPCNs)。研究了碳化温度对 OPCNs 微观结构和表面性质的影响。通过 SEM、TEM、N2 吸附和解吸、元素分析等方法观察和分析了制备的 OPCNs 的表面形貌/组成和表面纹理。在 700 °C 下活化的优化碳样品(OPCN-700)氧含量高达 24.4 wt%,比表面积高达 2 388 m2 g-1,具有良好的润湿性。此外,OPCN-700 具有丰富的微孔和二维纳米片结构,可有效存储和传输电解质离子。因此,当用作超级电容器的电极时,它在 0.5 A g-1 的条件下具有 382 F g-1 的高比电容,同时还具有出色的速率性能和循环稳定性。
Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors
The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.