用于小型机器人的电池

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Mrs Bulletin Pub Date : 2024-02-02 DOI:10.1557/s43577-023-00651-z
Minshen Zhu, Oliver G. Schmidt
{"title":"用于小型机器人的电池","authors":"Minshen Zhu, Oliver G. Schmidt","doi":"10.1557/s43577-023-00651-z","DOIUrl":null,"url":null,"abstract":"<p>The advent of small-scale robots holds immense potential for revolutionizing various industries, particularly in the domains of surgery and operations within confined spaces that are currently inaccessible to conventional tools. However, their tethered nature and dependence on external power sources impede their progress. To surmount these challenges, the integration of batteries into these diminutive robots emerges as a promising solution. This article explores the integration of batteries in small-scale robots, focusing on “hard” and “soft” approaches. The challenges of integrating rigid batteries into microrobots are discussed. Various battery materials suitable for microfabrication are explored, along with creating three-dimensional structures to optimize performance within limited space. The “soft” integration emphasizes the need for flexible and deformable battery technologies that seamlessly integrate with soft robotic systems. Challenges related to flexibility, stretchability, and biocompatibility are addressed. The concept of distributed and mobile energy units, where smaller batteries assemble into a larger power bank, is proposed for scalability and adaptability. Extracting energy from the environment, inspired by fuel cells, reduces reliance on traditional batteries. This article offers valuable insights into battery integration for small-scale robots, propelling advancements in autonomous and versatile systems. By overcoming current limitations, integrated batteries will unlock the full potential of small-scale robots across various industries.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"62 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Batteries for small-scale robotics\",\"authors\":\"Minshen Zhu, Oliver G. Schmidt\",\"doi\":\"10.1557/s43577-023-00651-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advent of small-scale robots holds immense potential for revolutionizing various industries, particularly in the domains of surgery and operations within confined spaces that are currently inaccessible to conventional tools. However, their tethered nature and dependence on external power sources impede their progress. To surmount these challenges, the integration of batteries into these diminutive robots emerges as a promising solution. This article explores the integration of batteries in small-scale robots, focusing on “hard” and “soft” approaches. The challenges of integrating rigid batteries into microrobots are discussed. Various battery materials suitable for microfabrication are explored, along with creating three-dimensional structures to optimize performance within limited space. The “soft” integration emphasizes the need for flexible and deformable battery technologies that seamlessly integrate with soft robotic systems. Challenges related to flexibility, stretchability, and biocompatibility are addressed. The concept of distributed and mobile energy units, where smaller batteries assemble into a larger power bank, is proposed for scalability and adaptability. Extracting energy from the environment, inspired by fuel cells, reduces reliance on traditional batteries. This article offers valuable insights into battery integration for small-scale robots, propelling advancements in autonomous and versatile systems. By overcoming current limitations, integrated batteries will unlock the full potential of small-scale robots across various industries.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-023-00651-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-023-00651-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

小型机器人的出现为各行各业带来了巨大的变革潜力,尤其是在目前传统工具无法进入的外科手术和狭小空间内的操作领域。然而,它们的系留特性和对外部电源的依赖阻碍了它们的发展。为了克服这些挑战,将电池集成到这些小巧的机器人中是一个很有前景的解决方案。本文以 "硬 "和 "软 "两种方法为重点,探讨了将电池集成到小型机器人中的问题。文章讨论了将刚性电池集成到微型机器人中的挑战。文章探讨了适合微型制造的各种电池材料,以及创建三维结构以优化有限空间内的性能。软 "集成强调了柔性和可变形电池技术与软机器人系统无缝集成的必要性。与柔性、可拉伸性和生物兼容性相关的挑战也得到了解决。为了提高可扩展性和适应性,提出了分布式移动能源单元的概念,即把较小的电池组装成一个较大的蓄电池组。受燃料电池的启发,从环境中提取能量可减少对传统电池的依赖。这篇文章为小型机器人的电池集成提供了宝贵的见解,推动了自主多功能系统的进步。通过克服当前的局限性,集成电池将释放各行各业小型机器人的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Batteries for small-scale robotics

The advent of small-scale robots holds immense potential for revolutionizing various industries, particularly in the domains of surgery and operations within confined spaces that are currently inaccessible to conventional tools. However, their tethered nature and dependence on external power sources impede their progress. To surmount these challenges, the integration of batteries into these diminutive robots emerges as a promising solution. This article explores the integration of batteries in small-scale robots, focusing on “hard” and “soft” approaches. The challenges of integrating rigid batteries into microrobots are discussed. Various battery materials suitable for microfabrication are explored, along with creating three-dimensional structures to optimize performance within limited space. The “soft” integration emphasizes the need for flexible and deformable battery technologies that seamlessly integrate with soft robotic systems. Challenges related to flexibility, stretchability, and biocompatibility are addressed. The concept of distributed and mobile energy units, where smaller batteries assemble into a larger power bank, is proposed for scalability and adaptability. Extracting energy from the environment, inspired by fuel cells, reduces reliance on traditional batteries. This article offers valuable insights into battery integration for small-scale robots, propelling advancements in autonomous and versatile systems. By overcoming current limitations, integrated batteries will unlock the full potential of small-scale robots across various industries.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
期刊最新文献
The Changing Face of the Cornea in a Case of Juvenile Glaucoma and Subclinical Keratoconus. Bone-inspired dynamically adaptive materials: Current efforts and future opportunities Tensile testing in high-pressure gaseous hydrogen using the hollow specimen method Grain refinement and precipitation strengthening in austenitic steels through Cu addition Posttranslational modifications in spider silk influence conformation and dimerization dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1