Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun
{"title":"智能光学骨密度测量法研究","authors":"Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun","doi":"10.1109/JTEHM.2024.3368106","DOIUrl":null,"url":null,"abstract":"Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual’s bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"401-412"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477504","citationCount":"0","resultStr":"{\"title\":\"A Study on Intelligent Optical Bone Densitometry\",\"authors\":\"Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun\",\"doi\":\"10.1109/JTEHM.2024.3368106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual’s bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"12 \",\"pages\":\"401-412\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477504\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10477504/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10477504/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
骨质疏松症是一种全球流行的慢性疾病,对老龄人口的影响尤为严重。骨质疏松症的金标准诊断工具是双能 X 射线吸收测定法(DXA)。然而,DXA 仪器价格昂贵,而且需要熟练的专业人员操作,这限制了普通大众对它的使用。本文在以往研究的基础上,提出了一种快速筛查骨密度的新方法。该方法利用近红外线捕捉人体局部信息。利用深度学习技术来分析获得的数据,并提取与骨密度相关的有意义的见解。我们利用多线性回归进行的初步预测显示,该预测与通过双能 X 射线吸收仪(DXA)测量的骨密度(BMD)之间存在很强的相关性(r = 0.98,p 值 = 0.003**)。这表明预测值与实际 BMD 测量值之间存在着非常显著的关系。应用基于深度学习的算法进一步分析基础信息,以预测手腕、髋部和脊柱的骨密度。由于髋部和脊柱是评估个人骨密度的黄金标准部位,因此预测这两个部位的骨密度具有重要意义。我们对腕部骨密度的预测误差率低于 10%,对髋部和脊柱骨密度的预测误差率低于 20%。
Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual’s bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.