{"title":"基于多光谱成像的组织氧饱和度检测系统与用于监测伤口愈合的伤口分割技术","authors":"Chih-Lung Lin;Meng-Hsuan Wu;Yuan-Hao Ho;Fang-Yi Lin;Yu-Hsien Lu;Yuan-Yu Hsueh;Chia-Chen Chen","doi":"10.1109/JTEHM.2024.3399232","DOIUrl":null,"url":null,"abstract":"Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red (\n<inline-formula> <tex-math>$\\mathrm {\\lambda } = 660$ </tex-math></inline-formula>\n nm) and near-infrared (\n<inline-formula> <tex-math>$\\mathrm {\\lambda } = 880$ </tex-math></inline-formula>\n nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"468-479"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528306","citationCount":"0","resultStr":"{\"title\":\"Multispectral Imaging-Based System for Detecting Tissue Oxygen Saturation With Wound Segmentation for Monitoring Wound Healing\",\"authors\":\"Chih-Lung Lin;Meng-Hsuan Wu;Yuan-Hao Ho;Fang-Yi Lin;Yu-Hsien Lu;Yuan-Yu Hsueh;Chia-Chen Chen\",\"doi\":\"10.1109/JTEHM.2024.3399232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red (\\n<inline-formula> <tex-math>$\\\\mathrm {\\\\lambda } = 660$ </tex-math></inline-formula>\\n nm) and near-infrared (\\n<inline-formula> <tex-math>$\\\\mathrm {\\\\lambda } = 880$ </tex-math></inline-formula>\\n nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"12 \",\"pages\":\"468-479\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528306\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10528306/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10528306/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multispectral Imaging-Based System for Detecting Tissue Oxygen Saturation With Wound Segmentation for Monitoring Wound Healing
Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red (
$\mathrm {\lambda } = 660$
nm) and near-infrared (
$\mathrm {\lambda } = 880$
nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.