Matthew D. Palmer, Benjamin J. Harrison, Jonathan M. Gregory, Helene T. Hewitt, Jason A. Lowe, Jennifer H. Weeks
{"title":"英国未来平均海平面上升的物理一致性故事情节框架","authors":"Matthew D. Palmer, Benjamin J. Harrison, Jonathan M. Gregory, Helene T. Hewitt, Jason A. Lowe, Jennifer H. Weeks","doi":"10.1007/s10584-024-03734-1","DOIUrl":null,"url":null,"abstract":"<p>We present a framework for developing storylines of UK sea level rise to aid risk communication and coastal adaptation planning. Our approach builds on the UK national climate projections (UKCP18) and maintains the same physically consistent methods that preserve component correlations and traceability between global mean sea level (GMSL) and local relative sea level (RSL). Five example storylines are presented that represent singular trajectories of future sea level rise drawn from the underlying large Monte Carlo simulations. The first three storylines span the total range of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) <i>likely</i> range GMSL projections across the SSP1-2.6 and SSP5-8.5 scenarios. The final two storylines are based upon recent high-end storylines of GMSL presented in AR6 and the recent literature. Our results suggest that even the most optimistic sea level rise outcomes for the UK will require adaptation of up to 1 m of sea level rise for large sections of coastline by 2300. For the storyline most consistent with current international greenhouse gas emissions pledges and a moderate sea level rise response, UK capital cities will experience between about 1 and 2 m of sea level rise by 2300, with continued rise beyond 2300. The storyline based on the upper end of the AR6 <i>likely</i> range sea level projections yields much larger values for UK capital cities that range between about 3 and 4 m at 2300. The two high-end scenarios, which are based on a recent study that showed accelerated sea level rise associated with ice sheet instability feedbacks, lead to sea level rise for UK capital cities at 2300 that range between about 8 m and 17 m. These magnitudes of rise would pose enormous challenges for UK coastal communities and are likely to be beyond the limits of adaptation at some locations.</p>","PeriodicalId":10372,"journal":{"name":"Climatic Change","volume":"8 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for physically consistent storylines of UK future mean sea level rise\",\"authors\":\"Matthew D. Palmer, Benjamin J. Harrison, Jonathan M. Gregory, Helene T. Hewitt, Jason A. Lowe, Jennifer H. Weeks\",\"doi\":\"10.1007/s10584-024-03734-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a framework for developing storylines of UK sea level rise to aid risk communication and coastal adaptation planning. Our approach builds on the UK national climate projections (UKCP18) and maintains the same physically consistent methods that preserve component correlations and traceability between global mean sea level (GMSL) and local relative sea level (RSL). Five example storylines are presented that represent singular trajectories of future sea level rise drawn from the underlying large Monte Carlo simulations. The first three storylines span the total range of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) <i>likely</i> range GMSL projections across the SSP1-2.6 and SSP5-8.5 scenarios. The final two storylines are based upon recent high-end storylines of GMSL presented in AR6 and the recent literature. Our results suggest that even the most optimistic sea level rise outcomes for the UK will require adaptation of up to 1 m of sea level rise for large sections of coastline by 2300. For the storyline most consistent with current international greenhouse gas emissions pledges and a moderate sea level rise response, UK capital cities will experience between about 1 and 2 m of sea level rise by 2300, with continued rise beyond 2300. The storyline based on the upper end of the AR6 <i>likely</i> range sea level projections yields much larger values for UK capital cities that range between about 3 and 4 m at 2300. The two high-end scenarios, which are based on a recent study that showed accelerated sea level rise associated with ice sheet instability feedbacks, lead to sea level rise for UK capital cities at 2300 that range between about 8 m and 17 m. These magnitudes of rise would pose enormous challenges for UK coastal communities and are likely to be beyond the limits of adaptation at some locations.</p>\",\"PeriodicalId\":10372,\"journal\":{\"name\":\"Climatic Change\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climatic Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10584-024-03734-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climatic Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10584-024-03734-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A framework for physically consistent storylines of UK future mean sea level rise
We present a framework for developing storylines of UK sea level rise to aid risk communication and coastal adaptation planning. Our approach builds on the UK national climate projections (UKCP18) and maintains the same physically consistent methods that preserve component correlations and traceability between global mean sea level (GMSL) and local relative sea level (RSL). Five example storylines are presented that represent singular trajectories of future sea level rise drawn from the underlying large Monte Carlo simulations. The first three storylines span the total range of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) likely range GMSL projections across the SSP1-2.6 and SSP5-8.5 scenarios. The final two storylines are based upon recent high-end storylines of GMSL presented in AR6 and the recent literature. Our results suggest that even the most optimistic sea level rise outcomes for the UK will require adaptation of up to 1 m of sea level rise for large sections of coastline by 2300. For the storyline most consistent with current international greenhouse gas emissions pledges and a moderate sea level rise response, UK capital cities will experience between about 1 and 2 m of sea level rise by 2300, with continued rise beyond 2300. The storyline based on the upper end of the AR6 likely range sea level projections yields much larger values for UK capital cities that range between about 3 and 4 m at 2300. The two high-end scenarios, which are based on a recent study that showed accelerated sea level rise associated with ice sheet instability feedbacks, lead to sea level rise for UK capital cities at 2300 that range between about 8 m and 17 m. These magnitudes of rise would pose enormous challenges for UK coastal communities and are likely to be beyond the limits of adaptation at some locations.
期刊介绍:
Climatic Change is dedicated to the totality of the problem of climatic variability and change - its descriptions, causes, implications and interactions among these. The purpose of the journal is to provide a means of exchange among those working in different disciplines on problems related to climatic variations. This means that authors have an opportunity to communicate the essence of their studies to people in other climate-related disciplines and to interested non-disciplinarians, as well as to report on research in which the originality is in the combinations of (not necessarily original) work from several disciplines. The journal also includes vigorous editorial and book review sections.