透视新兴电池中的路易斯酸碱相互作用

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-18 DOI:10.1002/adma.202406151
Qiaowei Lin, Dipan Kundu, Maria Skyllas-Kazacos, Jun Lu, Dongyuan Zhao, Khalil Amine, Liming Dai, Da-Wei Wang
{"title":"透视新兴电池中的路易斯酸碱相互作用","authors":"Qiaowei Lin, Dipan Kundu, Maria Skyllas-Kazacos, Jun Lu, Dongyuan Zhao, Khalil Amine, Liming Dai, Da-Wei Wang","doi":"10.1002/adma.202406151","DOIUrl":null,"url":null,"abstract":"Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspective on Lewis Acid-Base Interactions in Emerging Batteries\",\"authors\":\"Qiaowei Lin, Dipan Kundu, Maria Skyllas-Kazacos, Jun Lu, Dongyuan Zhao, Khalil Amine, Liming Dai, Da-Wei Wang\",\"doi\":\"10.1002/adma.202406151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202406151\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202406151","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

路易斯酸碱相互作用在化学过程中十分常见,并被广泛应用于合成、催化、电池、半导体和太阳能电池等领域。通过路易斯酸碱相互作用,可以精确调整从分子水平到更多聚集和组织结构的材料特性。本综述将重点介绍路易斯酸碱相互作用的起源、发展以及应用于材料设计和机理理解的前景,以促进电池材料和化学的发展。涉及的主题包括水电池、锂离子电池、固态电池、碱金属-硫电池和碱金属-氧电池。本综述将首先介绍路易斯酸碱理论。之后,将从液态电解质、固态聚合物电解质、金属阳极和高容量阴极等方面介绍路易斯酸碱相互作用在固态和液态电池中的应用策略。重点介绍离子传输、电化学稳定性、机械性能、反应动力学、树枝状生长、腐蚀等方面的内在机理。最后,还将分享与下一代电池的路易斯酸碱相互作用相关的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perspective on Lewis Acid-Base Interactions in Emerging Batteries
Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. Accelerating Li-Ion Diffusion in LiFePO4 by Polyanion Lattice Engineering. Domain Dynamics Response to Polarization Switching in Relaxor Ferroelectrics. Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1