{"title":"用于调节细菌附着行为的胍修饰多糖调节层。","authors":"","doi":"10.1016/j.colsurfb.2024.114215","DOIUrl":null,"url":null,"abstract":"<div><p>Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both <em>P. aeruginosa</em> and <em>S. aureus</em> and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for <em>P. aeruginosa</em> and <em>S. aureus</em> respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors\",\"authors\":\"\",\"doi\":\"10.1016/j.colsurfb.2024.114215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both <em>P. aeruginosa</em> and <em>S. aureus</em> and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for <em>P. aeruginosa</em> and <em>S. aureus</em> respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.</p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524004740\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524004740","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors
Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both P. aeruginosa and S. aureus and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for P. aeruginosa and S. aureus respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.