O. O. Permyakova, A. E. Rogozhin, A. V. Myagonkikh, K. V. Rudenko
{"title":"基于 HfO2/HfOXNY 的结构在耐久性测量过程中的低电阻状态退化","authors":"O. O. Permyakova, A. E. Rogozhin, A. V. Myagonkikh, K. V. Rudenko","doi":"10.1134/s1063782624030114","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The mechanism of resistive switching in Pt/HfO<sub>2</sub>(8 nm)/HfO<sub><i>X</i></sub>N<sub><i>Y</i></sub>(4 nm)/TiN structures, in which there are two resistive switching modes: bipolar resistive switching and complementary resistive switching. We demonstrate that resistive switching without external current compliance is possible. It is shown experimentally that the conductivity in the low-resistance state corresponds to the space-charge-limited current. A qualitative model is proposed that describes the transition from bipolar resistive switching to complementary resistive switching using Schottky barrier modulation at the metal-insulator interface. Based on this model, an explanation is given for the degradation of the low-resistance state during endurance measurements.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Resistance State Degradation during Endurance Measurements in HfO2/HfOXNY-Based Structures\",\"authors\":\"O. O. Permyakova, A. E. Rogozhin, A. V. Myagonkikh, K. V. Rudenko\",\"doi\":\"10.1134/s1063782624030114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The mechanism of resistive switching in Pt/HfO<sub>2</sub>(8 nm)/HfO<sub><i>X</i></sub>N<sub><i>Y</i></sub>(4 nm)/TiN structures, in which there are two resistive switching modes: bipolar resistive switching and complementary resistive switching. We demonstrate that resistive switching without external current compliance is possible. It is shown experimentally that the conductivity in the low-resistance state corresponds to the space-charge-limited current. A qualitative model is proposed that describes the transition from bipolar resistive switching to complementary resistive switching using Schottky barrier modulation at the metal-insulator interface. Based on this model, an explanation is given for the degradation of the low-resistance state during endurance measurements.</p>\",\"PeriodicalId\":21760,\"journal\":{\"name\":\"Semiconductors\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063782624030114\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782624030114","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Low Resistance State Degradation during Endurance Measurements in HfO2/HfOXNY-Based Structures
Abstract
The mechanism of resistive switching in Pt/HfO2(8 nm)/HfOXNY(4 nm)/TiN structures, in which there are two resistive switching modes: bipolar resistive switching and complementary resistive switching. We demonstrate that resistive switching without external current compliance is possible. It is shown experimentally that the conductivity in the low-resistance state corresponds to the space-charge-limited current. A qualitative model is proposed that describes the transition from bipolar resistive switching to complementary resistive switching using Schottky barrier modulation at the metal-insulator interface. Based on this model, an explanation is given for the degradation of the low-resistance state during endurance measurements.
期刊介绍:
Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.