考虑动态-水动力耦合的水动力涡轮机控制协同设计

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2024-08-16 DOI:10.1109/TCST.2024.3440249
Boxi Jiang;Mohammad Reza Amini;Yingqian Liao;Kartik Naik;Joaquim R. R. A. Martins;Jing Sun
{"title":"考虑动态-水动力耦合的水动力涡轮机控制协同设计","authors":"Boxi Jiang;Mohammad Reza Amini;Yingqian Liao;Kartik Naik;Joaquim R. R. A. Martins;Jing Sun","doi":"10.1109/TCST.2024.3440249","DOIUrl":null,"url":null,"abstract":"Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"48-60"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control Co-Design of Hydrokinetic Turbines Considering Dynamic–Hydrodynamic Coupling\",\"authors\":\"Boxi Jiang;Mohammad Reza Amini;Yingqian Liao;Kartik Naik;Joaquim R. R. A. Martins;Jing Sun\",\"doi\":\"10.1109/TCST.2024.3440249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 1\",\"pages\":\"48-60\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638132/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638132/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传统上,水动力涡轮(HKT)控制器是在确定物理涡轮变量后进行优化的。然而,与传统的顺序设计方法相比,通过考虑控制空间和涡轮形状之间的相互作用,同时改变控制和涡轮形状可以显着提高系统性能。本文通过引入一个控制协同设计(CCD)框架来深入研究这一前景,该框架是为变速HKT转子量身定制的同步优化。提出的CCD框架集成了一个动态-水动力模型,该模型捕捉了时变流型下HKT的水动力性能和控制策略之间复杂的相互作用。我们系统地研究了时变流环境中具有不同控制约束的情况,以探索控制空间与物理系统之间的耦合。我们通过比较研究案例证明了CCD框架相对于传统顺序设计方法的优势。考虑单一流动条件的CCD优化导致过于专业化的设计在其他非设计条件下表现不佳。因此,气流的随机性突出了在香港隧道设计过程中需要考虑更大范围的气流速度。为了解决这一挑战,我们引入了一个多点CCD优化,该优化考虑了年流量概率分布。与基于单一流动条件的优化相比,多点CCD方法显示出更高的年能量提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control Co-Design of Hydrokinetic Turbines Considering Dynamic–Hydrodynamic Coupling
Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
Table of Contents Optimal Cyclic Control of a Structurally Constrained Morphing Energy-Harvesting Kite Using an Experimentally Validated Simulation Model L1Quad: L1 Adaptive Augmentation of Geometric Control for Agile Quadrotors With Performance Guarantees Table of Contents Switched Hybrid Control for Spacecraft Attitude Control With Flexible and Guaranteed Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1