AtML:拟南芥根细胞身份识别工具,用于药用成分的积累。

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-09-16 DOI:10.1016/j.ymeth.2024.09.010
Shicong Yu , Lijia Liu , Hao Wang , Shen Yan , Shuqin Zheng , Jing Ning , Ruxian Luo , Xiangzheng Fu , Xiaoshu Deng
{"title":"AtML:拟南芥根细胞身份识别工具,用于药用成分的积累。","authors":"Shicong Yu ,&nbsp;Lijia Liu ,&nbsp;Hao Wang ,&nbsp;Shen Yan ,&nbsp;Shuqin Zheng ,&nbsp;Jing Ning ,&nbsp;Ruxian Luo ,&nbsp;Xiangzheng Fu ,&nbsp;Xiaoshu Deng","doi":"10.1016/j.ymeth.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><p><em>Arabidopsis thaliana</em> synthesizes various medicinal compounds, and serves as a model plant for medicinal plant research. Single-cell transcriptomics technologies are essential for understanding the developmental trajectory of plant roots, facilitating the analysis of synthesis and accumulation patterns of medicinal compounds in different cell subpopulations. Although methods for interpreting single-cell transcriptomics data are rapidly advancing in Arabidopsis, challenges remain in precisely annotating cell identity due to the lack of marker genes for certain cell types. In this work, we trained a machine learning system, AtML, using sequencing datasets from six cell subpopulations, comprising a total of 6000 cells, to predict Arabidopsis root cell stages and identify biomarkers through complete model interpretability. Performance testing using an external dataset revealed that AtML achieved 96.50% accuracy and 96.51% recall. Through the interpretability provided by AtML, our model identified 160 important marker genes, contributing to the understanding of cell type annotations. In conclusion, we trained AtML to efficiently identify Arabidopsis root cell stages, providing a new tool for elucidating the mechanisms of medicinal compound accumulation in Arabidopsis roots.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"231 ","pages":"Pages 61-69"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046202324002081/pdfft?md5=3b64d8bc9dc85039798d03e6014db597&pid=1-s2.0-S1046202324002081-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AtML: An Arabidopsis thaliana root cell identity recognition tool for medicinal ingredient accumulation\",\"authors\":\"Shicong Yu ,&nbsp;Lijia Liu ,&nbsp;Hao Wang ,&nbsp;Shen Yan ,&nbsp;Shuqin Zheng ,&nbsp;Jing Ning ,&nbsp;Ruxian Luo ,&nbsp;Xiangzheng Fu ,&nbsp;Xiaoshu Deng\",\"doi\":\"10.1016/j.ymeth.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Arabidopsis thaliana</em> synthesizes various medicinal compounds, and serves as a model plant for medicinal plant research. Single-cell transcriptomics technologies are essential for understanding the developmental trajectory of plant roots, facilitating the analysis of synthesis and accumulation patterns of medicinal compounds in different cell subpopulations. Although methods for interpreting single-cell transcriptomics data are rapidly advancing in Arabidopsis, challenges remain in precisely annotating cell identity due to the lack of marker genes for certain cell types. In this work, we trained a machine learning system, AtML, using sequencing datasets from six cell subpopulations, comprising a total of 6000 cells, to predict Arabidopsis root cell stages and identify biomarkers through complete model interpretability. Performance testing using an external dataset revealed that AtML achieved 96.50% accuracy and 96.51% recall. Through the interpretability provided by AtML, our model identified 160 important marker genes, contributing to the understanding of cell type annotations. In conclusion, we trained AtML to efficiently identify Arabidopsis root cell stages, providing a new tool for elucidating the mechanisms of medicinal compound accumulation in Arabidopsis roots.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"231 \",\"pages\":\"Pages 61-69\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1046202324002081/pdfft?md5=3b64d8bc9dc85039798d03e6014db597&pid=1-s2.0-S1046202324002081-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324002081\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

拟南芥能合成多种药用化合物,是药用植物研究的模式植物。单细胞转录组学技术对于了解植物根系的发育轨迹至关重要,有助于分析药用化合物在不同细胞亚群中的合成和积累模式。虽然拟南芥单细胞转录组学数据的解读方法在迅速发展,但由于缺乏某些细胞类型的标记基因,在精确标注细胞身份方面仍面临挑战。在这项工作中,我们使用来自六个细胞亚群(共 6000 个细胞)的测序数据集训练了一个机器学习系统 AtML,通过完整的模型可解释性预测拟南芥根细胞阶段并识别生物标记。使用外部数据集进行的性能测试表明,AtML 的准确率达到 96.50%,召回率达到 96.51%。通过 AtML 提供的可解释性,我们的模型确定了 160 个重要的标记基因,有助于理解细胞类型注释。总之,我们训练的 AtML 能有效识别拟南芥根细胞阶段,为阐明拟南芥根中药用化合物的积累机制提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AtML: An Arabidopsis thaliana root cell identity recognition tool for medicinal ingredient accumulation

Arabidopsis thaliana synthesizes various medicinal compounds, and serves as a model plant for medicinal plant research. Single-cell transcriptomics technologies are essential for understanding the developmental trajectory of plant roots, facilitating the analysis of synthesis and accumulation patterns of medicinal compounds in different cell subpopulations. Although methods for interpreting single-cell transcriptomics data are rapidly advancing in Arabidopsis, challenges remain in precisely annotating cell identity due to the lack of marker genes for certain cell types. In this work, we trained a machine learning system, AtML, using sequencing datasets from six cell subpopulations, comprising a total of 6000 cells, to predict Arabidopsis root cell stages and identify biomarkers through complete model interpretability. Performance testing using an external dataset revealed that AtML achieved 96.50% accuracy and 96.51% recall. Through the interpretability provided by AtML, our model identified 160 important marker genes, contributing to the understanding of cell type annotations. In conclusion, we trained AtML to efficiently identify Arabidopsis root cell stages, providing a new tool for elucidating the mechanisms of medicinal compound accumulation in Arabidopsis roots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping. Optimizing retinal Imaging: Evaluation of ultrasmall TiO2 Nanoparticle- fluorescein conjugates for improved Fundus fluorescein angiography. Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model. Data preprocessing methods for selective sweep detection using convolutional neural networks. SITP: A single cell bioinformatics analysis flow captures proteasome markers in the development of breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1